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Abstract
We study an integrable model of one-dimensional strongly correlated electrons
at finite temperature by explicit calculation of the correlation lengths of various
correlation functions. The model is invariant with respect to the quantum
superalgebra Uq(sl(2|1)) and characterized by the Hubbard interaction,
correlated hopping and pair-hopping terms. Using the integrability, the graded
quantum transfer matrix is constructed. From the analyticity of its eigenvalues,
a closed set of nonlinear integral equations is derived which describe the
thermodynamical quantities and the finite-temperature correlations. The results
show a crossover from a regime with dominating density–density correlations
to a regime with dominating superconducting pair correlations. Analytical
calculations in the low-temperature limit are also discussed.

PACS numbers: 75.10.Jm, 05.50+q

Dedicated to E Müller-Hartmann on the occasion of his 60th birthday.

1. Introduction

In recent decades, integrable models in one-dimensional strongly correlated electron systems
have attracted considerable attention in relation to high-Tc superconductivity. In general,
integrable models are solvable by means of the Bethe ansatz. The critical exponents of
the correlation functions depend only on the R-matrix of the underlying infinite-dimensional
symmetry and the geometry of the Fermi sea of the ground state (see the book [1] and references
therein). This important fact shows that all integrable models with a given R-matrix exhibit
the same universal critical behaviour.

On the other hand (1 + 1)-dimensional critical phenomena are connected with conformal
field theory (CFT) [2]. The central charge and conformal dimensions are calculated by
the scaling behaviour of the ground state and the low-lying excitations [3]. The conformal
dimensions determine the long-distance asymptotics of all correlation functions of any local
operators. For integrable models, one obtains the conformal dimensions by use of the Bethe

0305-4470/01/398015+41$30.00 © 2001 IOP Publishing Ltd Printed in the UK 8015

http://stacks.iop.org/ja/34/8015


8016 K Sakai and A Klümper

ansatz in terms of the so-called dressed charge function satisfying a linear integral equation.
Thus the Bethe ansatz together with CFT provide a powerful tool to study the correlation
functions especially at the critical point T = 0 [4, 5].

For finite temperatures, however, one encounters technical difficulties. Despite the fact that
the models are still solvable even off criticality, the above powerful methods lose effect due to
the collapse of conformal invariance. Qualitatively, we see that the long-distance behaviour of
the correlation functions show exponential decay and calculate the low temperature asymptotics
by extension of the conformal mapping (see, for example, [1]). However, we need another
approach for the quantitative understanding of the correlation functions at finite temperatures.

As a totally different approach, the quantum transfer matrix (QTM) has been proposed
recently to overcome such difficulties [6–16]. Originally the QTM method was developed
as an alternative method to traditional thermodynamical studies [17–19]. Utilizing the
Trotter mapping, one deals with a two-dimensional classical system instead of the original
one-dimensional quantum system. Using the underlying integrability, one constructs a
family of commuting QTMs [15, 16]. The commuting QTMs are diagonalized by means
of the Bethe ansatz. Thermodynamical quantities are expressed in terms of the sole
largest eigenvalue. Also, this procedure has remarkable advantages for the study of
correlation functions, which is the main topic of our paper. Explicitly, the correlation
lengths can be calculated by taking ratios of the largest eigenvalue and the sub-leading
ones [8, 13, 14, 16, 20–23].

In this paper we study a strongly correlated electron system using the approach sketched
above. As a result, we evaluate the six crucial correlation lengths for arbitrary particle densities
and finite temperatures: (i) the longitudinal and (ii) transversal spin–spin correlations, (iii) the
density–density correlations, (iv) the one-particle Green function, (v) the singlet and (vi) triplet
superconducting pair correlations. These are the first quantitative calculations for correlation
functions of strongly correlated electron systems off criticality.

The Hamiltonian of the model [24] on a periodic lattice of size L is defined by

H = −
L∑

j=1

∑
σ=↑,↓

(c
†
j,σ cj+1,σ + c

†
j+1,σ cj,σ ) exp

(− 1
2 (η − σγ )nj,σ − 1

2 (η + σγ )nj+1,−σ

)

+U
L∑

j=1

nj,↑nj,↓ + tp

L∑
j=1

(c
†
j+1,↑c

†
j+1,↓cj,↑cj,↓ + c

†
j,↑c

†
j,↓cj+1,↑cj+1,↓) (1.1)

where c†
j,σ (cj,σ ) denotes the fermion creation (annihilation) operator at the j th site satisfying

the canonical aniticommutation relations

{c†
j,σ , c

†
k,τ } = {cj,σ , ck,τ } = 0 {c†

j,σ , ck,τ } = δjkδστ (1.2)

and nj,σ is the number operator, i.e. nj,σ = c
†
j,σ cj,σ . The ground state properties and the

long-distance behaviour of the correlation functions have been studied in [24] by the Bethe
ansatz and CFT. Due to the massive spin excitations (γ �= 0), the ground state properties
are described by a one-component Tomonaga–Luttinger liquid (Luther–Emery liquid). For
this system the one-particle Green function decays exponentially fast, the density–density
and certain pair correlations are quasi-longranged with algebraic decay. As the model is
one-dimensional it does not exhibit off-diagonal long-range order. However, the crossover
behaviour from dominant density–density correlations to dominant (singlet) pair correlations
driven by the density of particles manifests superconducting properties. More quantitatively,
on the basis of scaling arguments and RG concepts we would expect that higher-dimensional
interactions such as interchain couplings are relevant and may lead to true condensation of
Cooper pairs.
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The model is related to a trigonometricR-matrix which is a solution to the graded YBE [25]
associated with the four-dimensional irreducible representation of the quantum superalgebra
Uq(sl(2|1)) [26] (see also [27] for the rational case γ = 0). The diagonalization of the
Hamiltonian for general η and γ was done in [24] and the diagonalization of the associated row-
to-row transfer matrix was done for the rational case γ = 0 in [28,29,36]. The thermodynamics
have been investigated by the traditional thermodynamic Bethe ansatz based on the string
hypothesis in [30] and the present approach in [31].

The asymptotic behaviour of correlation functions of this model has been studied so far
only for the ground state where a crossover was established from a normal to a ‘superconduct-
ing’ regime driven by the particle density. Here we want to extend this study to finite temper-
atures where we are especially interested in the extension of the ‘superconducting regime’ in
the density–temperature phase diagram. For this purpose we define the QTM acting on a Z2-
graded vector space. As a consequence, the genuine fermionic statistics are built into the QTM
algebraically through the Grassmann parity p[j ] (see equation (2.26)). Regarding the thermo-
dynamical quantities, one might content oneself with the corresponding null Grassmann parity
model, because the fermionic statistics do not affect the thermodynamical quantities directly.
(We obtain the null-parity model satisfying the ordinary Yang–Baxter equation by multiplying
the original graded R-matrix by suitable minus signs.) However, one must be careful to keep
track of the fermionic statistics when considering the physical quantities changing the particle
number. As the auxiliary and quantum space are the same graded vector space, we easily obtain
the eigenvalues of the QTM by using the results from the algebraic Bethe ansatz for the row-
to-row transfer matrix. The resultant eigenvalues can be expressed in the dressed vacuum form
(DVF) via the Bethe ansatz equation (BAE). The difference between the DVF of the QTM and
the one of the row-to-row transfer matrix consists only of their vacuum parts. Hence, in the ac-
tual calculation to the DVF, one utilizes the methods developed in the finite-size correction prob-
lem [32]. In consequence, all information of the BAE is contained in three nonlinear integral
equations (NLIEs), which are valid for a system with any Trotter number N . In this approach,
the limit N → ∞ can be taken analytically. This finite set of NLIEs allows for highly accurate
numerical calculations of physical quantities such as the above-mentioned correlation lengths.
In particular, we observe temperature-dependent crossover phenomena between regimes dom-
inated by density–density or (singlet) superconducting pair correlations, respectively.

At low temperatures, the three NLIEs are reduced to only one linear integral equation,
which reflects the one-component Tomonaga–Luttinger (Luther–Emery) liquid properties.
This linear equation is evaluated analytically and reproduces the predictions from CFT. The
formulations in this paper are applicable to various kinds of strongly correlated electron systems
which have superalgebra invariance: for example, the supersymmetric extended Hubbard
model (sl(2|2)-invariance) [33, 34].

The layout of this paper is as follows. In section 2 we define the commuting QTM
constructed by the graded R-matrix. The QTM is diagonalized by the algebraic Bethe ansatz
in analogy to the ordinary row-to-row transfer matrix. In section 3 we study the eigenvalues by
introducing certain auxiliary functions. Investigating their analyticity, we determine the NLIE
for the largest and sub-leading eigenvalues. We obtain six sets of NLIEs characterizing the
above-mentioned correlations. The numerical results for these NLIEs are discussed. Section 4
is devoted to the analytical calculation of the low-temperature asymptotics of the correlations
characterized by gapless excitations. Section 5 contains our conclusions. Details of technical
calculations are summarized in various appendices.
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2. The graded quantum transfer matrix

The model (1.1) is solvable under the conditions

tp = U

2
= shγ

shαγ
exp(−η) = sh(α + 1)γ

shαγ
. (2.1)

Here the physical region of the two parameters α and γ is restricted to γ � 0 and α > 0
(repulsive) or α < −1 (attractive). (This does not include the pure Hubbard model which
corresponds to η = γ = tp = 0 and U �= 0 violating (2.1). Note however, that a unified
treatment of the Uq(sl(2|1))-invariant generalized Hubbard model and the standard Hubbard
model might be possible on the basis of the work in [35].)

Several prominent models are comprised as special cases: the supersymmetric t−J model
(γ = 0, α → 0), the pure correlated-hopping model (|α| → ∞) and a model of hard-core
particles of three species (doubly occupied site, single electron with spin pointing either up or
down) (α → −1). For any finite γ the spinon excitations have a mass gap and so do single-
particle excitations. The pair excitations (singlet) and the particle–hole type excitations are
massless. The former excitations become gapless for the repulsive case (α > 0) in the rational
limit γ = 0. Consequently, for γ > 0 the one-particle Green function shows exponential
decay and hence the momentum distribution function has no singularity at the Fermi point.

The classical counterpart of this model is given by a trigonometric R-matrix which is
associated with the one parameter family of the four-dimensional irreducible representation
of the quantum superalgebra Uq(sl(2|1)) [26] (see also [27] for the rational case γ = 0).
Choosing the following basis:

|1〉 ≡ | ↑↓〉 = c
†
↓c

†
↑|0〉 |2〉 ≡ | ↓〉 = c

†
↓|0〉 |3〉 ≡ | ↑〉 = c

†
↑|0〉 |4〉 ≡ |0〉 (2.2)

with grading |1〉, |4〉 even (bosonic) and |2〉, |3〉 odd (fermionic), one determines the following
36 non-zero matrix elements:

R11
11(v) = [2α − v]

[2α + v]
R22

22(v) = R33
33(v) = −1 R44

44(v) = [2α + 2 + v]

[2α + 2 − v]

R12
12(v) = R13

13(v) = R21
21(v) = R31

31(v) = − [v]

[2α + v]

R24
24(v) = R34

34(v) = R42
42(v) = R43

43(v) = [v]

[2α + 2 − v]

R14
14(v) = R41

41(v) = [v][v − 2]

[2α + v][2α + 2 − v]
R23

23(v) = R32
32(v) = [v]2

[2α + v][2α + 2 − v]

R21
12(v) = R31

13(v) = e−γ v/2[2α]

[2α + v]
R12

21(v) = R13
31(v) = eγ v/2[2α]

[2α + v]

R41
14(v) = e−γ v[2α][2α + 2]

[2α + v][2α + 2 − v]
R14

41(v) = eγ v[2α][2α + 2]

[2α + v][2α + 2 − v]

R32
23(v) = −eγ v/2[2][v] − [2α][2α + 2]

[2α + v][2α + 2 − v]
R23

32(v) = −e−γ v/2[2][v] − [2α][2α + 2]

[2α + v][2α + 2 − v]
(2.3)

R42
24(v) = R43

34(v) = e−γ v/2[2α + 2]

[2α + 2 − v]
R24

42(v) = R34
43(v) = eγ v/2[2α + 2]

[2α + 2 − v]

R23
14(v) = −R41

32(v) = −
√

[2α][2α + 2]e−γ (1+v)/2[v]

[2α + v][2α + 2 − v]

R32
14(v) = −R41

23(v) =
√

[2α][2α + 2]eγ (1−v)/2[v]

[2α + v][2α + 2 − v]
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R14
23(v) = −R32

41(v) = −
√

[2α][2α + 2]eγ (1+v)/2[v]

[2α + v][2α + 2 − v]

R14
32(v) = −R23

41(v) =
√

[2α][2α + 2]e−γ (1−v)/2[v]

[2α + v][2α + 2 − v]

where R
γδ

αβ(v) are defined by

R(v)|α〉 ⊗
s

|β〉 = |γ 〉 ⊗
s

|δ〉Rγδ

αβ(v) (2.4)

with [v] := sh(γ v/2) and the graded tensor product satisfies P |α〉 ⊗s |β〉 :=
(−)p[α]p[β]|β〉 ⊗s |α〉 where P denotes permutation. This R-matrix is known to satisfy the
graded Yang–Baxter equation (GYBE) [25]

R12(u − v)R13(u)R23(v) = R23(v)R13(u)R12(u − v) (2.5)

which explicitly reads in terms of the matrix elements

Rβ1β2
γ1γ2

(u − v)Rγ1β3
α1γ3

(u)Rγ2γ3
α2α3

(v)(−)(p[α1]+p[γ1])p[γ2]

= Rβ2β3
γ2γ3

(v)Rβ1γ3
γ1α3

(u)Rγ1γ2
α1α2

(u − v)(−)(p[β1]+p[γ1])p[γ2] (2.6)

where the Grassmann parity p[j ] is defined by p[1] = p[4] = 0 (bosonic), p[2] = p[3] = 1
(fermionic). In equation (2.6) and later we sum over repeated indices. Note that the parity of
the R-matrix is even, i.e.

p[R] ≡ p[α] + p[β] + p[γ ] + p[δ] ≡ 0 mod 2. (2.7)

To relate model (1.1) to the above classical model, we construct the graded transfer matrix

T (v) = Stra{RaL(v) . . . Ra2(v)Ra1(v)}. (2.8)

Using theR-matrix parity (2.7), one writes explicitly the transfer matrix by means of the matrix
elements (2.4)

T β1β2...βL
α1α2...αL

(v) = (−)p[a]+
∑L

j=2(p[αj ]+p[βj ])
∑j−1

k=1 p[βk ]Ra βL
γL−1αL

(v) . . . Rγ2β2
γ1α2

(v)Rγ1β1
a α1

(v). (2.9)

Due to the GYBE (2.5), the transfer matrices T (v) commute for different spectral parameters
v and v′

[T (v), T (v′)] = 0. (2.10)

Using the fact that the local Hamiltonian Hjj+1 can be expressed as the derivative of Rjj+1(v)

Hjj+1 = −2sh(α + 1)γ

γ
Pjj+1

d

dv
Rjj+1(v)

∣∣∣∣
v=0

+2ch(α + 1)γ − 2(nj,↑ + nj,↓ + nj+1,↑ + nj+1,↓)ch(α + 1)γ (2.11)

we can expand the transfer matrix T (v) with respect to v as

T (v) = T (0)

(
1 − γ v

2sh(α + 1)γ
H′ + O(v2)

)
. (2.12)

Here we have introduced the superpermutation operator Pjj+1 whose matrix elements are

[Pjj+1]γ δαβ = [Rjj+1(0)]
γ δ

αβ = (−)p[α]p[β]δαδδβγ . (2.13)

Note that H′ denotes the Hamiltonian (1.1) with shifted chemical potential and ground state
energy

H′ = H − 2Lch(α + 1)γ + 2Nech(α + 1)γ (2.14)

where Ne is the electron number operator.
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In order to treat the finite-temperature case, we consider another R-matrix defined by

R
γδ

αβ(v) = (−)p[β](p[α]+p[γ ])Rδα
βγ (v). (2.15)

This matrix R satisfies the following type of GYBE:

R12(v − u)R13(−u)R23(v) = R23(v)R13(−u)R12(v − u) (2.16)

which reads explicitly

R
β1β2

γ1γ2
(v − u)R

γ1β3

α1γ3
(−u)Rγ2γ3

α2α3
(v)(−)(p[α1]+p[γ1])p[γ2]

= Rβ2β3
γ2γ3

(v)R
β1γ3

γ1α3
(−u)R

γ1γ2

α1α2
(v − u)(−)(p[β1]+p[γ1])p[γ2]. (2.17)

Using this, one constructs the transfer matrix

T (v) = Stra{RaL(v) . . . Ra2(v)Ra1(v)} (2.18)

explicitly reading

T
β1β2...βL

α1α2...αL
(v) = (−)p[a]+

∑L
j=2(p[αj ]+p[βj ])

∑j−1
k=1 p[βk ]R

a βL

γL−1αL
(v) . . . R

γ2β2

γ1α2
(v)R

γ1β1

a α1
(v). (2.19)

We expand this transfer matrix in the same manner as (2.12),

T (v) = T (0)

(
1 − γ v

2sh(α + 1)γ
H′ + O(v2)

)
. (2.20)

Combining the above relations and using T (0)T (0) = 1 (note that T (0) and T (0) denote the
right and left shift operators, respectively), one obtains

T (u)T (u) = 1 − γ u

sh(α + 1)γ
H′ + O(v2). (2.21)

From the above equation, it follows that

exp(−βH′) = lim
N→∞

[
T (uN)T (uN)

]N/2
uN = 2βsh(α + 1)γ

Nγ
. (2.22)

Here β is the reciprocal temperature; β = 1/T and the height N of the fictitious underlying
square lattice is even and referred to as the Trotter number. Hence the free energy f of the
original quantum system (1.1) is given by

f = − lim
L→∞

lim
N→∞

1

Lβ
ln
(

Tr
[
T (uN)T (uN)

]N/2
)

+ 2(1 − ne)ch(α + 1)γ (2.23)

where ne denotes the particle density of the system. Calculating Tr
[
T (uN)T (uN)

]N/2
from the

eigenvalues of T (uN)T (uN) is a serious problem, because the spectrum is infinitely degenerate
in the limit of infinite Trotter number uN→0 (for N → ∞). To avoid this difficulty, we
transform Tr[T (uN)T (uN)]N/2 as

Tr
N/2∏
k=1

Stra2ka2k−1{Ra2kL(uN) . . . Ra2k1(uN)Ra2k−1L(uN) . . . Ra2k−11(uN)}

= Str
L∏

j=1

Trj
N/2∏
k=1

Ra2kj (uN)Ra2k−1j (uN). (2.24)

Now we introduce the QTM,

TQ(v) = Trj
N/2∏
k=1

Ra2kj (uN + v)Ra2k−1j (uN − v) (2.25)
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explicitly

TQ
β1β2...βN
α1α2...αN

(v) = (−)
∑N

j=2(p[αj ]+p[βj ])
∑j−1

k=1 p[βk ]

×R
βNa

αNγN−1
(uN + v)RβN−1γN−1

αN−1γN−2
(uN − v) . . . R

β2γ2

α2γ1
(uN + v)Rβ1γ1

α1a
(uN − v). (2.26)

Due to the GYBE (2.5) and (2.16), the QTM is commutative, i.e.

[TQ(uN, v), TQ(uN, v
′)] = 0. (2.27)

We will see that the largest eigenvalue is separated by a gap from the rest of the spectrum for
any N persisting in the limit N → ∞ as long as T > 0. Since the two limits in equation (2.23)
can be interchanged (for a proof, see [6, 7]), we take the limit L → ∞ first. As there exists
a finite gap between the largest eigenvalue #max(0) and the sub-leading eigenvalues #sub(0),
we can write

f = − lim
N→∞

1

β
ln#max(0) + 2(ne − 1)ch(α + 1)γ. (2.28)

In this approach, the thermodynamical completeness − limβ→0 βf = ln 4 follows easily from
limN→∞ #max(0) = 4 which is obvious from the definition of R(v) (2.3) and R(v) (2.15).

Most significantly, this method makes it possible to calculate various correlation lengths
at finite temperature through the relation

1

ξ
= − lim

N→∞
ln

∣∣∣∣ #sub(0)

#max(0)

∣∣∣∣. (2.29)

The QTM can be diagonalized by means of the algebraic Bethe ansatz method. Due to
the fact that auxiliary and quantum space are the same Z2-graded vector space, one can utilize
the results for the algebraic Bethe ansatz for the row-to-row transfer matrix case [28, 29, 36].
(The formulation in [28, 36] is based on the non-graded rational (γ = 0) R-matrix which is
connected to our graded case by R

γδ

αβ → (−)p[γ ]p[δ]R
γδ

αβ . The basic difference between the
standard and graded formulation lies in the existence of extra phase factors in the DVF and the
BAE.) Replacing the parameters uN and v by

γ

2
v → iv

γ

2
uN → uN = βsh(α + 1)γ

N
(2.30)

and choosing the state (|1〉 ⊗s |4〉)⊗s N/2 as the pseudo-vacuum state (reference state), one
writes the eigenvalue #(v) of the QTM in the DVF

#(v) = φ1(v)
q1(v + i

2γ (2α + 1))

q1(v + i
2γ )

e2µβ + φ2(v)
q1(v + i

2γ (2α + 1))

q1(v + i
2γ )

q2(v + iγ )

q2(v)
eµβ

+φ2(v)
q1(v + i

2γ (2α + 1))

q1(v − i
2γ )

q2(v − iγ )

q2(v)
eµβ + φ3(v)

q1(v + i
2γ (2α + 1))

q1(v − i
2γ )

(2.31)

where the functions φ1(v), φ2(v) and φ3(v) are defined by

φ1(v) =
(

sh(iv + uN)sh(iv + uN − γ )sh(iv − uN + αγ )

sh(iv + uN − (α + 1)γ )sh(iv + uN + αγ )sh(iv − uN − αγ )

)N
2

φ2(v) =
(

sh(iv − uN)sh(iv + uN)

sh(iv − uN − αγ )sh(iv + uN − (α + 1)γ )

)N
2

φ3(v) = φ1(−v)|α→−α−1

(2.32)

and the chemical potential µ (shifted by µ + 2ch(α + 1)γ → µ, see appendix A) have been
introduced. The functions q1(v) and q2(v) are written in the form

q1(v) =
n∏

j=1

sin(v − v
(1)
j ) q2(v) =

m∏
j=1

sin(v − v
(2)
j ) (2.33)
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where the unknown parameters {v(1)j }j∈{1,2,...,n} and {v(2)j }j∈{1,2,...,m} are the Bethe ansatz
rapidities determined from the BAE

q2(v
(1)
j + i

2γ )

q2(v
(1)
j − i

2γ )
= −φ1(v

(1)
j − i

2γ )

φ2(v
(1)
j − i

2γ )
eβµ

q1(v
(2)
j + i

2γ )

q1(v
(2)
j − i

2γ )
= − q2(v

(2)
j + iγ )

q2(v
(2)
j − iγ )

. (2.34)

To end this section, we emphasize that our QTM is based on the graded formulations,
which means that the genuine fermionic statistics of the model are properly built into the
algebraic structure of the QTM through the Grassmann parity p[j ] (see (2.26)). Nevertheless,
the DVF and the BAE have quite simple forms. This indicates that the differences between the
null and non-null Grassmann parity models in one dimension are embedded into differences
of boundary conditions.

3. Nonlinear integral equations

In this section we analyse the eigenvalue#(v) in DVF form (2.31) by selecting certain auxiliary
functions including the information of the BAE. From now on we consider the repulsive case
α > 0. For the largest eigenvalue, the auxiliary functions and NLIE have been introduced
in [31]. For some special eigenvalues with certain symmetries including the largest eigenvalue,
one needs only two auxiliary functions [31].

In order to treat the general case, we introduce the following three auxiliary functions:

a0(v) = λ1(x)(λ3(x) + λ4(x))

λ2(x)(λ1(x) + λ2(x) + λ3(x) + λ4(x))

∣∣∣∣∣
x=v+ i

2 αγ

A0(v) = 1 + a0(v)

a0(v) = λ2(x)

λ3(x) + λ4(x)

∣∣∣∣∣
x=v+ i

2 αγ

A0(v) = 1 + a0(v)

a1(v) = λ1(x)

λ2(x) + λ3(x) + λ4(x)

∣∣∣∣∣
x=v+ i

2 αγ

A1(v) = 1 + a1(v)

(3.1)

where the functions λj (x) denote the j th term in the right-hand side in the DVF (2.31).
These auxiliary functions satisfy certain functional relations. Exploring their analyticity,

one transforms these functional relations into a closed set of NLIEs. Here we consider the
NLIE for the largest eigenvalue and some sub-leading ones which describe the correlations.

The details of the calculations are deferred to appendices B and C.

3.1. Largest eigenvalues

First we consider the largest eigenvalue. As described above, one finds the NLIE for this
eigenvalue in [31]. For completeness we study this case by using the above three auxiliary
functions.

The largest eigenvalue belongs to the sector n = N andm = N/2 in the BAE (2.34). From
numerical calculations with finite Trotter number N , we observe the above auxiliary functions
have the following analytical properties: the function A0(v) (A0(v)) is analytic and non-zero
in a finite strip in the lower (upper) half-plane −γ /2 < Im v < 0 (0 < Im v < γ/2), and the
function A1(v) is analytic and non-zero along the real axis. (In fact, these auxiliary functions
have trivial zeros and poles of order N/2 which come from the vacuum parts in the DVF. These
zeros and poles partly appear in the above ‘analyticity strips’ and give rise to the leading terms
of the NLIEs.) Hereafter we call the region −γ /2 < Im v < γ/2 the ‘physical strip’. Due
to this analyticity, we can transform the functional relations satisfied by the above auxiliary



Finite-temperature correlations for the Uq(sl(2|1))-invariant Hubbard model 8023

functions into NLIEs by using the Fourier transform together with Cauchy’s theorem. In this
procedure one takes the Trotter limit N → ∞ analytically (see appendix B). Consequently,
we obtain the following closed set of NLIE:

ln a0(v) = βψ(v) + k ∗ ln A0(v) + k ∗ ln A1(v) + βµ

ln a0(v) = βψ(−v) + k ∗ ln A0(v) + k ∗ ln A1(v) + βµ

ln a1(v) = β(ψ(v) + ψ(−v)) + k̄ ∗ ln A0(v) + k ∗ ln A0(v) + k1 ∗ ln A1(v) + 2βµ

(3.2)

with the kernels and leading terms

k(v) = shγ

2sh(iv)sh(iv − γ )
k(v) = k(−v) k1(v) = k(v) + k(v)

ψ(v) = sh2(α + 1)γ

sh(iv + 1
2αγ )sh(iv − 1

2γ (α + 2))

(3.3)

where the symbol ∗ denotes the convolution defined by

f ∗ g(v) = 1

π

∫
C

f (v − x)g(x) dx = 1

π

∫
v−C

f (x)g(v − x) dx. (3.4)

The integration contours C for convolutions with ln A0, ln A0 and ln A1 in (3.2) should be
taken by a straight line ranging over a full period π with imaginary part −δ, +δ and 0 (δ is
arbitrary but fixed in the range 0 < δ < γ/2), respectively. Through the solution to the above
NLIE, the largest eigenvalue is expressed by

ln#max(v) = .(v) + ζ ∗ ln A0(v) + ζ ∗ ln A0(v) + (ζ + ζ ) ∗ ln A1(v) (3.5)

where the kernels ζ(v), ζ (v) and the leading term .(v) are defined by

.(v) = −2βsh2((α + 1)γ )ch((α + 1)γ )

sh(iv + (α + 1)γ )sh(iv − (α + 1)γ )
ζ(v) = −ψ(−v)

2sh(α + 1)γ
ζ (v) = ζ(−v).

(3.6)

From equation (3.2), we find a0(v) = a0(−v) and the real function a1(v) is symmetric with
respect to both real and imaginary axis. Hence the threefold set of NLIEs (3.2) can be reduced
to only two NLIEs which are identical to the ones in [31].

3.2. General NLIE for arbitrary eigenvalues

The sub-leading eigenvalues of the QTM (2.31) are treated in a way similar to the largest
eigenvalue. The main difference lies in the existence of additional zeros and poles of the
auxiliary functions. Therefore one observes additional terms in the NLIE (‘sin’ terms).
Consequently all correlation functions are characterized by the distribution patterns of these
additional zeros or poles.

Often in the case of excited states the second factors in the convolutions are logarithms of
periodic functions, however with non-zero winding numbers, ln A(π/2)−ln A(−π/2) = 2nπ i
(n ∈ Z). This gives rise to a second set of additional terms in the NLIE (‘cos’ terms).

Thus we obtain the following general NLIE with additional terms ln ϕ0(v), ln ϕ1(v) and
ln ϕ0(v):

ln a0(v) = βψ(v) + k ∗ ln A0(v) + k ∗ ln A1(v) + ln ϕ0(v) + βµ

ln a0(v) = βψ(−v) + k ∗ ln A0(v) + k ∗ ln A1(v) + ln ϕ0(v) + βµ

ln a1(v) = β(ψ(v) + ψ(−v)) + k̄ ∗ ln A0(v) + k ∗ ln A0(v)

+k1 ∗ ln A1(v) + ln ϕ1(v) + 2βµ.

(3.7)
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Figure 1. Temperature dependence of the chemical potentials for interaction parameters α = 1,
γ = 1 and various particle densities. The symbol ∗ denotes the zero-temperature chemical
potentials derived by (A.5) and (A.9) in appendix A. In our units the Boltzmann constant is kB = 1.

The additional terms in the above general NLIE must be determined for each eigenvalue
separately. Note that the relation ϕ1(v) = ϕ0(v)ϕ0(v) is always valid due to certain algebraic
structures of the auxiliary functions (see appendices B and C). In (3.7) and later, we take the
same integration contours as in the case of the largest eigenvalue. Thus the corresponding
NLIE for arbitrary eigenvalues (including the largest eigenvalue) are written in the following
general form:

ln#(v) = .(v) + ζ ∗ ln A0(v) + ζ ∗ ln A0(v) + (ζ + ζ ) ∗ ln A1(v) + ln χ(v) (3.8)

where the term ln χ(v) is also determined from the distribution pattern of the additional zeros
and poles.

As concrete examples, we determine the additional terms for the eigenvalues
corresponding to the asymptotics of the (i) one-particle Green function, (ii) transversal spin–
spin correlations, (iii) density–density correlations or longitudinal spin–spin correlations,
(iv) sub-dominant correlations of case (iii), (v) singlet and (vi) triplet superconducting
correlations (see appendix C).

3.3. Numerical analysis of the NLIE

Here we evaluate the above NLIE numerically. As seen in the above section, the NLIEs are
exact expressions for the thermodynamical quantities and various correlations at any finite
temperature. In contrast to the standard TBA they close at a finite level. Hence one obtains
physical quantities explicitly by a highly accurate numerical analysis. To keep the electron
density constant, we adopt temperature-dependent chemical potentials µ(T ) determined from

d〈ne(T , µ(T ))〉
dT

= d

dT

(
∂f

∂µ

)
T

= 0. (3.9)

In figure 1 we depict µ(T ) for α = 1, γ = 1 and various particle densities. We solve the NLIE
by the iteration method. In each step, convolution parts are calculated by making use of the
fast Fourier transform. The subsidiary conditions which determine the zeros θ0, θ1, etc (see,
for example, equation (C.5)) are solved by the Newton method.
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Let us consider the NLIE characterizing the correlation lengths via formula (2.29).
Figure 2(a) shows the temperature-dependent correlation lengths (multiplied by T ) of the one-
particle Green functions for various particle densities. The caseα = γ = 1 is used as a concrete
example throughout this paper and is equivalent toU/2 = tp = 1 in (1.1). Due to the finite gap
of single-particle excitations, we observe that the correlation length multiplied by temperature
shows monotonic decay with decreasing temperature with zero limit for zero temperature. We
observe a crossover behaviour of the correlation lengths at low temperature close to particle
density ne = 1.5: for ne < 1.5 (ne > 1.5) the values of ξ increase (decrease) with n.
A similar behaviour is observed in other correlations described by massive excitations. The
transversal spin–spin correlations and the triplet superconducting pair correlations are depicted
in figures 3(a) and 4(b), respectively. We also depict the temperature-dependent oscillatory
terms of the one-particle Green functions, transversal spin–spin correlations, and density–
density correlations in figures 2(b), 3(b) and 5(b), respectively. Regarding the one-particle
Green functions, one observes clearly a temperature dependence of the ‘Fermi momentum’
kF. In the low-temperature limit T → 0, the wavevector converges to the expected value
kF = πne/2 which indicates the significance of the Fermi surface for one-particle excitations
in the Tomonaga–Luttinger liquid at T = 0. As seen in figure 1 (and also expected) the
chemical potential grows to +∞ (−∞) for T → ∞ if the particle density is kept fixed at a
high (low) value. This indicates a broadening of the momentum distribution at finite and in
particular at high temperatures. Hence, processes of particle–hole type closer to the middle of
the band become statistically dominant. Consequently, the wavevector kF decreases (increases)
with increasing T if the value at T = 0 is large (small). As shown in figures 5(b) and 3(b),
oscillatory terms of the density–density and transversal spin–spin correlations converge to
2kF → πne. This behaviour corresponds to the excitations carrying a 2kF momentum. For the
same reason as mentioned in the case of the one-particle Green function, this 2kF is shifted with
increasing temperature. The quantitative difference of the oscillation terms for the transversal
spin–spin correlations and the density–density correlations lies in the different nature of these
excitations. The density–density correlations are described by particle–hole excitations from
the left to the right Fermi point without changing the electron and spin numbers. On the other
hand, the transversal spin–spin correlations are characterized by massive excitations changing
the spin number.

Figures 5(a) and 4(a) show the density–density and the singlet superconducting pair
correlation lengths, respectively. Due to massless excitations, the scaled correlation
lengths T ξ(T ) are finite at zero temperature. The low-temperature asymptotics agree with
the analytic calculations in section 4 and the prediction from CFT in appendix A (see
figure A.1). At low temperatures one observes a crossover from dominant density–density
correlations to dominant singlet superconducting pair correlations driven by the particle
density (see also figure A.1 in appendix A): below (above) a certain critical density ρc,
the dynamics is dominated by singlet superconducting pair correlations (density–density
correlations). This behaviour is changed at higher temperatures. Here at low (high)
densityρ the density–density correlations (singlet superconducting pair correlations) dominate,
see figure 6. Of course, these findings for high particle density and temperature do not
imply any tendency towards superconductivity. It should be borne in mind that the overall
length scale of the density–density and singlet superconducting pair correlations is rather
short in comparison to the lattice constant. Furthermore, neither of these correlations
dominate the dynamics with increasing temperature as the one-particle Green function
takes over. This implies a picture of rather uncorrelated one-particle dynamics at higher
temperature.
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Figure 2. (a) Temperature dependence of the scaled correlation lengths T ·ξ(T ) for the one-particle
Green function. (b) Temperature dependence of the wavevector of the oscillation terms. At zero
temperature one observes the kF oscillation (kF = πne/2 depicted by the symbol ∗) characteristic
for the one-particle Green function.

Finally, we comment on the sub-dominant density–density (longitudinal spin–spin)
correlations in figure 7. The correlations are characterized by simple particle–hole excitations
at each Fermi point. Correspondingly, the correlation lengths (multiplied by temperature T )
approach the Fermi velocities vF/(2π) in the low-temperature limit.

4. Low-temperature asymptotics

In this section we consider the model at low temperatures. The largest eigenvalue and those
sub-leading ones described by massless excitations are calculated approximately up to O(1/β).
As a consequence, the NLIEs are reduced to only one linear integral equation and this linear
integral equation is connected directly with the dressed functions (see appendix A).

Due to the massive spin excitations, the two auxiliary functions ln a0(v) and ln a0(v) can
be neglected as a0, a0 ∼ e−εβ (ε > 0). Hence the three NLIEs characterizing the grand
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Figure 3. (a) Temperature dependence of the correlation lengths of the transversal spin–spin
correlations. (b) The wavevector 2kF of the oscillations which is characteristic for the spin–spin
correlations. At zero temperature one observes the strict relation of wavevector with particle density
2kF = πne (analytical values are depicted by the symbol ∗).

potential and correlation functions reduce to the single integral equation

ln a1(v) = −βε(0)(v) + k1
C1∗ ln A1(v) + ln ϕ̃1(v) (4.1)

where

ε(0)(v) = −ψ(v) − ψ(−v) − 2µ (4.2)

and ϕ̃1 is a collection of only the ‘cos’ terms of the function ϕ1 listed in appendix C. The ‘sin’
terms do not show up explicitly as they are taken care of by the modified contour C1 (see
appendix C). Throughout this section the convolution f ∗ g(v) is understood in the manner

f ∗ g(v) := 1

π

∫
C

f (v − x)g(x) dx. (4.3)

Numerically, one observes that the function a1(v) has a crossover behaviour from a1(v) � 1
to a1(v) � 1 (see figure 8). The Fermi point #F can be defined by the following conditions
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Figure 4. Temperature dependence of the correlation lengths for singlet superconducting pair
correlations (a) and triplet pair correlations (b). The symbol ∗ in (a) denotes results of the analytical
calculation in the low-temperature limit presented in section 4 confirming the predictions from CFT
in appendix A.

satisfied by ln a1(v) for the largest eigenvalue (C1 is taken by a straight line on the real axis),

ln a1(±#F) = 0 (1/β � 1) (4.4)

and for the excited states we demand Re ln a1(±#F) = 0 for ±#F on the real axis.

4.1. O(β) and O(1) approximation

First we calculate O(β) and O(1) approximations for the largest and those sub-leading ones
characterized by gapless excitations: (i) particle–hole excitations at each of the left and
right Fermi points (define n+ and n− as corresponding quantum numbers), (ii) particle–hole
excitations of dc charges from the left to right Fermi point, but no change of the total charge
number and total spin number, and (iii) singlet pair excitations near the Fermi points; annihilate
or create ∆Nc = 2nc (nc ∈ Z) charges in a symmetric way near the Fermi points. The
longitudinal spin–spin correlations 〈σ z

j σ
z
i 〉 and the density–density correlations 〈njni〉 are
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Figure 5. (a) Temperature dependence of the correlation lengths for the density–density
correlations. The wavevector of the oscillation term is depicted in (b). The symbol ∗ denotes
results of the analytical calculation in section 4 in the low-temperature limit and the predictions
from CFT in appendix A.

characterized by excitations (i) and (ii). On the other hand, the singlet superconducting pair
correlations 〈cj+1,↑cj,↓ci+1,↑ci,↓〉 are described by (iii).

4.1.1. The largest eigenvalue. In the low-temperature limit, the function ln A1(v) can be
written in terms of a1(v) as ln A1(v) � ln a1(v) for |v| > #F and ln A1(v) � 0 for |v| < #F

(figure 8). Hence we have

ln a1(v) = −βε(0)(v) + k1
C1∗ ln a1(v) + O(1/β) (4.5)

where the symbol
C1∗ for the case of the largest eigenvalue denotes

k1
C1∗ ln a1(v) = 1

π

∫
C1

k1(x) ln a1(v − x) dx

= 1

π

(∫ −#F

− π
2

+
∫ π

2

#F

)
k1(x) ln a1(v − x) dx. (4.6)
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Figure 6. (a) Low particle density: crossover from dominant (superconducting) singlet pair
correlations at low temperature to dominant density–density correlations at high temperature.
(b) High particle density: opposite to scenario in (a) for density n = 1.25 (upper two curves).
For n = 1.0 the crossing lies outside the shown temperature window.

Using the definition of the dressed energy ε(v) (A.7), we find a solution to the above equation

ln a1(v) = −βε(v) + O(1/β). (4.7)

Then we have an approximate value for ln a1(v) at the Fermi points

ln a1(±#F) = 0 + O(1/β). (4.8)

4.1.2. Particle–hole excitations at each of left and right Fermi points. This excitation is
characterized by excited charges at the left (right) Fermi points −#F (#F). In the simplest,
still characteristic, case, one zero is separated by n− (n+) holes from the Fermi sea of zeros at
the Fermi point ∓#F. The holes (zeros) are to be circumvented by the deformed contour in anti-
clockwise (clockwise) manner (see appendix C). The function ln A1(v) can be approximated
in terms of a1(v) in the same manner as case (1). Hence we obtain the same approximate value
as in (4.8).
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Figure 7. Temperature dependence of the sub-dominant density–density (longitudinal spin–spin)
correlation lengths. At low temperature there is convergence to the Fermi velocity vF/(2π) (denoted
by the symbol ∗).

4.1.3. Particle–hole excitations from left to right Fermi points. These excitations are
described by dc charges moved from the left (right) Fermi point to right (left) one. This
excitation entails a change of momentum 2kFdc. Correspondingly, the auxiliary function
A1(v) has 2dc zeros near the Fermi points with behaviour different from those in the largest
eigenvalue case: dc zeros (of ‘particle type’) are distributed in the upper half-plane near the
left Fermi point and the remaining dc zeros (of ‘hole type’) are located in the lower half-plane
near the right Fermi point, and vice versa.

These zeros should be circumvented by the deformed contours in clockwise manner at
the left Fermi point and anti-clockwise manner at the right Fermi point (see appendix C).
At low temperatures, ln A1(v) is replaced by ln A1(v) � 0 for |v| < #F and ln A1(v) �
ln a1(v) + 2π idc for |v| > #F (see figure 9 for dc = 1). Thus we have the linear integral
equation characterizing the excitation:

ln a1(v) = −βε(0)(v) + k1
C1∗ ln(a1(v) + 2π idc) + O(1/β) (4.9)

where C1 denotes the integration in the region |v| > #F along with the modified contours C1

defined in appendix C. From the definition of the dressed energy ε(v) (A.7) and the dressed
charge Z(v) (A.12), we have a solution to the above equation,

ln a1(v) = −βε(v) +

(
Z(v)

2
− 1

)
· 2π idc + O(1/β). (4.10)

Thus we obtain the value

ln a1(#F) =
(
Z(#F)

2
− 1

)
· 2π idc + O(1/β). (4.11)

4.1.4. Singlet pair excitations. As mentioned above, singlet pair excitations are characterized
by annihilated 2nc charges. Correspondingly, one observes the function A1(v) has 2nc

additional zeros near the Fermi points, i.e. nc zeros are located near the left Fermi point
and remaining nc zeros are located near the right Fermi point. All these additional zeros are
distributed in the lower half-plane and are circumvented by the deformed contour in a manner
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Figure 8. Crossover behaviour of the functions (a) ln a1(v) and (b) ln A1(v) (real parts) for
α = γ = 1, ne = 1.00 and β = 50. The Fermi point #F defined by (4.4) is found to be
#F = ±0.748.

different from case (3), in counter-clockwise manner at both Fermi points (see appendix C).
Simultaneously, nc additional poles appear in the upper half-plane and are located on the π/2-
axis. Though these poles do not appear explicitly in the NLIE, they lead to a non-vanishing
winding number of a1(v), i.e. ln a1(v) is not periodic (see figure 10):

Im [ln a1(±π/2)] = ∓ncπ. (4.12)

In the-low temperature limit, ln A1(v) can be replaced by ln A1(v) � 0 for |v| < #F,
ln A1(v) � ln a1(v) − 2π inc for −π/2 < v < −#F and ln A1(v) � ln a1(v) + 2π inc for
#F < v < π/2 (see figure 10). Thus we obtain the integral equation

ln a1(v) = −βε0(v) + k1
C1∗ S[ln a1](v) + O(1/β) (4.13)
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Figure 9. Numerical results for the functions Im ln a1(v) (a) and Im ln A1(v) (b) for α = γ = 1,
ne = 1.00, β = 50 and dc = 1. Due to the additional zeros (circumvented by the modified
integration contour C1), ln A1(v) is discontinuous near the Fermi points #F = ±0.748.

where the symbol
C1∗ denotes the convolution and the functional S[g] applied to an analytic

function g(v) is defined stepwise by

S[g](v) =



g(v) − 2π inc for −π/2 < v < −#F

0 for −#F < v < #F

g(v) + 2π inc for #F < v < π/2

(4.14)

with ‘analytic continuation’ out of the interval [−π/2, π/2] by the description S[g](v + π) =
S[g](v) + 4π inc. We directly see that the real part of the solution to (4.13) is given by the
dressed energy (A.7)

ln a1(v) = −βε(v) + if (v) (4.15)

and the imaginary part f has to satisfy the linear integral equation

if (v) = k1
C1∗ S[if ](v). (4.16)
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Figure 10. Numerical results for the functions (a) Im ln a1(v) and (b) Im ln A1(v) for α = γ = 1,
ne = 1.00, β = 50 and nc = 1. One observes that the function ln a1(v) is a superposition of
a periodic function and a linearly increasing term. The function ln A1(v) is discontinuous at the
Fermi points #F = ±0.748. The discontinuity derives from the additional zeros (circumvented by
the contour) at the Fermi points.

Obviously, the solution is unique and odd. Taking the derivative of (4.16) we find

f ′(v) = f ′
0(v) + k1

C1∗ f ′(v)

f ′
0(v) = 1

π

{
k1(v − #F)(f (#F) + 2ncπ) + k1(v + #F)(−f (−#F) + 2ncπ)

}
.

(4.17)

The symbol C1 denotes the integration contour [−π/2,−#F]
⋃

[#F, π/2]. From the relation
f (−π/2) = −f (π/2) = ncπ , we find for the odd function f (v)

2f (#F) + 2ncπ = −
∫
C1

f ′(v) dv = −
∫
C1

Z(v)f ′
0(v)

2
dv. (4.18)

Substituting (4.17) and using the definition of the dressed charge Z(v) (A.12), we arrive at

f (#F) =
(

1

Z(#F)
− 1

)
· 2πnc. (4.19)
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From equation (4.15) and the above result, ln a1(#F) is expressed by

ln a1(#F) =
(

1

Z(#F)
− 1

)
· 2π inc. (4.20)

4.1.5. General cases. Due to linearity and the results in (1)–(4), one finds

ln a1(#F) =
(
Z(#F)

2
− 1

)
· 2π idc +

(
1

Z(#F)
− 1

)
· 2π inc. (4.21)

4.2. O(1/β) corrections for the NLIEs

To evaluate the O(1/β) corrections for the NLIEs (4.1), we must calculate the integral term,
taking into account its behaviour near the Fermi points ±#F. To achieve this, we divide the
integration term into three parts as

1

π

∫ π
2

− π
2

k1(x) ln A1(v − x) dx =
∫ π

2

− π
2

k1(v − x) ln A1(x) dx + nc ln
cos(v + iγ )

cos(v − iγ )

→ 1

π

∫
C1

k1(v − x)(ln a1(x) + 2π idc + 2π iσ(x)) dx + nc ln
cos(v + iγ )

cos(v − iγ )

+
1

π

∫
C1

k1(v − x) ln

(
1 +

1

a1(x)

)
dx

+
1

π

∫
|v|<#F

k1(v − x) ln(1 + a1(x)) dx (4.22)

with σ(x) = −nc, 0, nc for x ∈ [−π/2,−#F], [−#F,#F], [#F, π/2]. Note that the
additional ‘cos’ term which depends on the definition of the convolution (see appendix C)
appears in the above equation. As we have already treated the first linear term in equation (4.22),
we concentrate on the last two nonlinear terms. Let us split the integration intervals into two
parts: [−π/2, 0]

⋃
[0, π/2]. The integrations over the negative interval read

1

π

∫ −#F

−π/2
k1(v − x) ln

(
1 +

1

a1(x)

)
dx +

1

π

∫ 0

−#F

k1(v − x) ln(1 + a1(x)) dx. (4.23)

Changing the variable to z = − ln a1(v) and using the fact that the derivative of ln a1(v) is
dominated by the one of −βε(v), i.e. dz/dv � − ln′ a1(−#F) = βε′(−#F) = −βε′(#F),
one obtains

(4.23) = −k1(v + #F)

πβε′(#F)

(∫ ∞

− ln a1(−#F)

ln(1 + e−z) dz +
∫ − ln a1(−#F)

−∞
ln(1 + ez) dz

)
. (4.24)

The integration contours should be taken to circumvent the singularities (see appendix C). The
resultant integration is expressed as

→ − k1(v + #F)

πβε′(#F)

(
π2

6
+

1

2
[ln a1(−#F) + 2π i(dc − nc)]

2 − 4π2n−
)
. (4.25)

Adding the results of the positive real axis, we obtain

1

π

∫
C1

k1(v − x) ln

(
1 +

1

a1(x)

)
dx +

1

π

∫
|v|<#F

k1(v − x) ln(1 + a1(x)) dx

= −π

βε′(#F)

{(
1

6
− 4∆+

)
k1(v − #F) +

(
1

6
− 4∆−

)
k1(v + #F)

}

∆± = 1

2

(
nc

Z(#F)
± dc

2
Z(#F)

)2

+ n±.

(4.26)
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Here ∆± is nothing but the conformal dimensions defined in (A.11). Hence we obtain the
NLIE up to O(1/β),

ln a1(v) = −βε(0)(v) + k1
C1∗ (ln a1 + 2π idc + 2π iσ)(v) + nc ln

cos(v + iγ )

cos(v − iγ )

− π

βε′(#F)

{(
1

6
− 4∆+

)
k1(v − #F) +

(
1

6
− 4∆−

)
k1(v + #F)

}
. (4.27)

4.3. O(1/β) corrections to the eigenvalues

Repeating the same argument for the eigenvalues, we obtain

ln#(0) = 2βch(α + 1)γ −
∫
C1

ψ(v) + ψ(−v)

2πsh(α + 1)γ
(ln a1(v) + 2π idc) dv

+
2πψ(#F)(1/6 − 2∆+ − 2∆−)

βε′(#F)sh(α + 1)γ
. (4.28)

Next we apply the integral identity for bare (a0, b0) and dressed functions (a, b), i.e. if
a = a0 +k∗a, and b = b0 +k∗b then we have

∫
ab0 = ∫

a0b. Applying this to equation (4.27)
(‘a = ln a1 + 2π idc + 2π iσ ’) and the density function (‘b = >’) defined in (A.4), we obtain

−
∫
C1

ψ(v) + ψ(−v)

2πsh(α + 1)γ
(ln a1(v) + 2π idc) dv = (βµ + π idc)ne +

β

2

∫
C1

(ψ(v) + ψ(−v))ρ(v) dv

− π

2βε′(#F)

{(
1

6
− 4∆+

)∫
C1

k1(v − #F)>(v) dv

+

(
1

6
− 4∆−

)∫
C1

k1(v + #F)>(v) dv

}
. (4.29)

Substituting (4.29) for (4.28) and using (A.4), we arrive at

ln#(0) = −β
{
ε0 + 2(ne − 1)ch(α + 1)γ − µne

}− π2>(#F)(1/6 − 2∆+ − 2∆−)
βε′(#F)

+ π idcne

= − β{ε0 + 2(ne − 1)ch(α + 1)γ − µne}
+
π(1/6 − 2∆+ − 2∆−)

βvF
+ π idcne (4.30)

where ε0 and vF denote the ground state energy per site (A.6) and the Fermi velocity (A.14),
respectively. Using (4.30) and (2.29), one obtains the low-temperature asymptotics of the
correlation lengths:

ξ = βvF

2π(∆+ + ∆−)
. (4.31)

From the above calculation and the numerical observation, we can describe the low-
temperature behaviour of the grand potential (2.28) and the correlation lengths (2.29) by
selecting the ‘quantum numbers’ (nc, dc, n

+, n−).

4.3.1. Free energy. Selecting the quantum numbers (nc, dc, n
+, n−) = (0, 0, 0, 0), we obtain

the O(1/β) correction for the grand potential per site (2.28),

f = {
ε0 + 2(ne − 1)ch(α + 1)γ + µne

}− π

6β2vF
. (4.32)

This asymptotics agrees with CFT with central charge c = 1.
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4.3.2. Density–density and longitudinal spin correlations. To obtain the low-temperature
asymptotics of the correlation lengths ξd for the density–density correlations 〈njni〉, the
selection rules require us to set the quantum numbers to (nc, dc, n

+, n−) = (0,±1, 0, 0).
Thus we obtain

ξd = 2βvF

πZ(#F)2
. (4.33)

In addition to the above correlation lengths, one observes a 2kF oscillation term in the correlation
functions

2kF = πne. (4.34)

In the case of the correlation lengths of the longitudinal spin–spin correlations ξsl, we have to
choose the same quantum numbers as for the density–density correlations. Hence we have

ξsl = ξd. (4.35)

4.3.3. Sub-dominant density–density (longitudinal spin) correlations. One also obtains the
sub-dominant correlation lengths for the density–density or longitudinal spin–spin correlations
which are described by the quantum numbers (nc, dc, n

+, n−) = (0, 0, 1, 0) or (0, 0, 0, 1). The
resultant asymptotics of the correlation lengths are given by

ξ sub
d = ξ sub

sl = βvF

2π
. (4.36)

4.3.4. Singlet superconducting pair correlations. Finally, we consider the low-temperature
behaviour of the correlation lengths ξsp for the singlet superconducting pair correlations
〈c†

j+1,↑c
†
j,↓ci+1,↑ci,↓〉 determined from the quantum numbers (nc, dc, n

+, n−) = (±1, 0, 0, 0).
The result reads

ξsp = βvFZ(#F)
2

2π
. (4.37)

All these analytical calculations of the low-temperature properties are consistent with the
numerical results in the previous section and the predictions from CFT in appendix A.

5. Summary and discussion

In this paper we have investigated the finite-temperature correlations of the strongly correlated
electron system in one dimension with Uq(sl(2|1))-invariance and various types of interaction
such as Hubbard and correlating hopping terms. As a consequence we observe a competition of
normal versus ‘superconducting’ correlations. By concrete calculations of the corresponding
correlation lengths we have found dominant pair correlations for low particle densities n and
temperatures T . In detail, we have found that singlet pair correlation lengths dominate over
density–density correlation lengths for low ne and T , but also for high n and T . In the latter
case, however, the one-particle Green function dominates over all other correlations.

The computational task was achieved by a first principles approach based on a lattice path
integral formulation of the Hamiltonian at finite temperature and the subsequent diagonalization
of a suitably defined QTM describing transfer in the chain direction. The BAEs for the leading
and next-leading eigenvalues were reformulated in terms of a finite set of NLIEs where the limit
of infinite Trotter number could be taken analytically. The NLIEs were solved numerically
for arbitrary finite temperature and various particle densities. In the low-temperature limit
the analytic investigation confirmed the CFT picture and reproduced the dressed energy and
dressed charge formalism known from the finite-size analysis of the T = 0 problem.
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The QTM was based on Z2-grading formulations, which reflect the proper fermionic
statistics. The formulations are applicable directly to other strongly correlated electron
systems.

It is an interesting problem to compare our results for the fermionic system with the
ones of the corresponding spin system. The eigenvalues of the QTM constructed by the (null
Grassmann parity) R-matrix which satisfies the ordinary YBE are written as

#spin(v) = φ1(v)
q1(v + i

2γ (2α + 1))

q1(v + i
2γ )

e2µβ + (−)N−nφ2(v)
q1(v + i

2γ (2α + 1))

q1(v + i
2γ )

q2(v + iγ )

q2(v)
eµβ

+(−)N−nφ2(v)
q1(v + i

2γ (2α + 1))

q1(v − i
2γ )

q2(v − iγ )

q2(v)
eµβ

+φ3(v)
q1(v + i

2γ (2α + 1))

q1(v − i
2γ )

. (5.1)

Due to the extra factor (−)N−n (N denotes the Trotter number and n is the number of electrons),
the one-particle Green function for the original system no longer corresponds to the one for the
spin system. Consequently, the characteristic kF oscillations for the one-particle Green function
disappear and instead 2kF oscillations will enter the corresponding correlation function in the
spin system.

In our work we have provided the framework for a systematic investigation of the
correlation lengths at finite temperature with an application to a characteristic set of interaction
parameters. We have not yet performed a comprehensive study of the phase diagrams for a
wider range of parameters. This remains to be done in a future publication. Also, the effect of a
non-vanishing magnetic field remains to be explored. We expect that for the isotropic limit, i.e.
γ → 0, the ‘superconducting regime’ in the density–temperature phase diagram will shrink
to a point. Also the effect of a magnetic field will lead to similar NLIEs where the chemical
potential terms βµ have to be replaced by β(µ ± h/2) and 2βµ remains fixed. The solutions
to these NLIEs are expected to break the symmetries of the Bethe ansatz patterns with respect
to reflections at the imaginary and/or real axis leading to independent Fermi momenta of spin
up and spin down electrons.
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Appendix A. Low-temperature behaviour from CFT

The ground state properties and the long-distance behaviour of some correlation functions
have already been investigated in [24] with the aid of the root density method and CFT.
Here we slightly modify the formulation of [24] for direct comparison of our results with the
prediction from CFT. The ground state properties and low-lying excitations considered here
are characterized by the BAE

[
sin(λj + ( α2 + 1)γ i) sin(λj + α

2 γ i)

sin(λj − ( α2 + 1)γ i) sin(λj − α
2 γ i)

]L
=

N↓∏
k=1

sin(λj − #k + iγ )

sin(λj − #k − iγ )



Finite-temperature correlations for the Uq(sl(2|1))-invariant Hubbard model 8039

Ne/2∏
j=1

sin(#k − λj + iγ )

sin(#k − λj − iγ )
= −

N↓∏
l=1

sin(#k − #l + iγ )

sin(#k − #l − iγ )
, (A.1)

where Ne and N↓ denote the total number of electrons and the number of down-spin electrons,
respectively. We derive directly the above equation from the fact that the ground state energy
is described by two-string electron rapidities, and hence shifting the rapidities λj → λj +iγ /2,
λj+1 → λj − iγ /2 in equation (6) in [24]. The ground state energy can be written as

E0 = −2
Ne/2∑
j=1

[cos(k(λj + iγ /2)) + cos(k(λj − iγ /2))]

= −2
Ne/2∑
j=1

[
2ch(α + 1)γ +

ψ(λj ) + ψ(−λj )

2

]
(A.2)

where

k(v) = π − 2 arctan

(
tan v

th((α + 1)γ /2)

)
. (A.3)

By solving the spin rapidities #k in terms of the charge rapidities λj , we obtain the density
function >(v) in the thermodynamic limit,

>(v) = −ψ(v) + ψ(−v)

πsh(α + 1)γ
+

1

π

∫
C1

k1(v − x)>(x) dx (A.4)

where the Fermi points ±#F are determined from the subsidiary condition for the total electron
density ne ∫

C1

>(x) dx = ne. (A.5)

Hence the ground state energy per site ε0 is expressed in terms of the density function

ε0 = −
∫
C1

(
2ch(α + 1)γ +

ψ(x) + ψ(−x)

2

)
>(x) dx. (A.6)

The dressed energy ε(v)

ε(v) = ε(0)(v) +
1

π

∫
C1

k1(v − x)ε(x) dx (A.7)

characterizes the low-lying excitations. Here the bare energy function ε(0)(v) is defined by (as
in (A.8))

ε(0)(v) = −ψ(v) − ψ(−v) − 2µ. (A.8)

Note that the chemical potential is shifted by µ + 2ch(α + 1)γ → µ. The condition

ε(±#F) = 0 (A.9)

provides another way to define the Fermi points ±#F for given chemical potential µ.
As mentioned in section 4, we observe massless excitations described by quantum numbers

(nc, dc, n
+, n−). Using the concept of CFT, one obtains the correlation functions for primary

fields as

〈φ∆±(x)φ∆±(0)〉 = exp(−2idckF)

x2(∆++∆−) (A.10)

where ∆± are the conformal dimensions of the primary operators

∆± = 1

2

(
nc

Z(#F)
± dc

2
Z(#F)

)2

+ n±. (A.11)
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Figure A.1. Numerical results for the correlations based on CFT (T � 1). The density–density
correlations, singlet superconducting pair correlations and the sub-dominant density–density
correlations correspond to the quantum numbers (nc, dc, n

+, n−) = (0,±1, 0, 0), (±1, 0, 0, 0)
and (0, 0, 1, 0) ((0, 0, 0.1)), respectively.

Here the function Z(#F) denotes the dressed charge determined from the integral equation

Z(v) = 2 +
1

π

∫
C1

k1(v − x)Z(x) dx. (A.12)

For finite temperatures in the scaling limit (0 < T � 1), where conformal invariance
is valid, the correlation functions are obtained from the T = 0 case by the following
replacement [5] in (A.10):

x → vFβ

π
sh

πx

βvF
(A.13)

where vF is the Fermi velocity defined by

vF = ε′(−#F)

π>(v)
= −ε′(#F)

π>(v)
. (A.14)

Thus the long-distance behaviour of the correlation functions G(x) is given by

G(x) ∼ cos(2kFdcx) exp

(
−2π(∆+ + ∆−)x

βvF

)
. (A.15)

Fitting this with G(x) ∼ exp(−x/ξ), one obtains the correlation lengths ξ at T � 1

ξ = βvF

2π(∆+ + ∆−)
. (A.16)

The numerical results of (A.16) are shown in figure A.1 for (nc, dc, n
+, n−) = (0,±1, 0, 0),

(±1, 0, 0, 0) and (0, 0, 1, 0) ((0, 0, 0, 1)). These low-temperature asymptotics of the
correlation lengths are consistent with (4.31).

Appendix B. Derivation of NLIE for largest eigenvalue

Here we derive the NLIE for the largest eigenvalue by using the auxiliary functions defined
by (3.1). The derivation is applicable to the general eigenvalues after a simple modification of
the integration contours.
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The auxiliary functions are defined by certain combinations of λj (x) (1 � j � 4):

a0(v) = λ1(x)(λ3(x) + λ4(x))

λ2(x)#(x)
A0(v) = (λ1(x) + λ2(x))(λ2(x) + λ3(x) + λ4(x))

λ2(x)#(x)

a0(v) = λ2(x)

λ3(x) + λ4(x)
A0(v) = λ2(x) + λ3(x) + λ4(x)

λ3(x) + λ4(x)

a1(v) = λ1(x)

λ2(x) + λ3(x) + λ4(x)
A1(v) = #(x)

λ2(x) + λ3(x) + λ4(x)

(B.1)

where x = v + i
2αγ . Note that the eigenvalues are written in the following form:

#(v) = λ1(v) + λ2(v) + λ3(v) + λ4(v). (B.2)

Using the definition of λj (x), we can write

λ1(x) + λ2(x) = q1(x + i
2γ (2α + 1))

q1(x + i
2γ )

{
φ1(x)e

2µβ + φ2(v)
q2(x + iγ )

q2(x)
eµβ

}
. (B.3)

One finds that function (B.3) has poles stemming from q2(x). Due to the BAE (2.34), the
poles from q1(x + i

2γ ) must be cancelled out. Hence the second factor in (B.3) must take the
following form:

φ1(x)e
2µβ + φ2(v)

q2(x + iγ )

q2(x)
eµβ ∝ sh

N
2 (ix + uN)q1(x + i

2γ )q
h
2 (x)

φ+(x)sh
N
2 (ix − uN − αγ )q2(x)

φ+(x) = [sh(ix + uN + αγ )sh(ix + uN − (α + 1)γ )]
N
2 .

(B.4)

where the function qh
2 (x) is a certain analytic function which has N + m − n zeros for the

largest eigenvalue case. Substituting (B.4) for (B.3), we obtain

λ1(x) + λ2(x) ∝ sh
N
2 (ix + uN)q1(x + i

2γ (2α + 1))qh
2 (x)

φ+(x)sh
N
2 (ix − uN − αγ )q2(x)

. (B.5)

Similarly, we find that λ3(x) + λ4(x) can be written as

λ3(x) + λ4(x) ∝ sh
N
2 (ix − uN)q1(x + i

2γ (2α + 1))qh
2 (x − iγ )

φ−(x)sh
N
2 (ix + uN − (α + 1)γ )q2(x)

φ−(x) = [sh(ix − uN − αγ )sh(ix − uN + (α + 1)γ )]
N
2 .

(B.6)

Thanks to the BAE (2.34), the eigenvalues (B.2) are analytic functions (except for the trivial
poles which derive from the vacuum functions in (2.31)). Thus the eigenvalues (B.2) must
take the form

#(x) ∝ q1(v + i
2γ (2α + 1))qh

1 (x)

φ+(x)φ−(x)
(B.7)

where qh
1 (x) is an analytic function having 2N −n zeros for the largest eigenvalue case. After

shifting the parameter x → v + i
2αγ , we obtain the functional relations to be satisfied by
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certain combinations of the auxiliary functions

a0(v) ∝ [sh(iv − uN + γ

2 α)sh(iv + uN − γ

2 (α + 2))]
N
2 qh

2 (v + i
2γ (α − 2))

qh
1 (v + i

2αγ )q2(v + i
2γ (α + 2))

a0(v) ∝ [sh(iv + uN − γ

2 α)sh(iv − uN + γ

2 (α + 2))]
N
2 q2(v + i

2γ (α + 2))

q1(v + i
2γ (α + 1))qh

2 (v + i
2γ (α − 2))

A1(v)

a1(v)
∝ q1(v + i

2γ (α + 1))qh
1 (v + i

2αγ )

φ+(v + i
2αγ )φ−(v + i

2αγ )

A0(v)A1(v) ∝ q1(v + i
2γ (α + 1))qh

2 (v + i
2γα)

[sh(iv + uN + γ

2 α)sh(iv − uN − γ

2 α)]
N
2 q2(v + i

2γ (α + 2))

A0(v)A1(v) ∝ qh
1 (v + i

2γα)q2(v + i
2γα)

[sh(iv + uN + γ

2 α)sh(iv − uN − γ

2 α)]
N
2 qh

2 (v + i
2γ (α + 2))

.

(B.8)

For the largest eigenvalue, we find numerically the following analyticity properties: q1(v +
i
2γ (α+1)), q2(v+ i

2γ (α+2) (qh
1 (v+ i

2αγ ), q
h
2 (v+ i

2γ (α−2))) are analytic and non-zero in the
upper (lower) half-plane, and λ2(v+ i

2γ )+λ3(v+ i
2γ )+λ4(v+ i

2γ ) is analytic and non-zero in the
physical strip − γ

2 < Im v <
γ

2 . (In fact, we also observe thatqh
1 (v+ i

2αγ ) = q1(−v+ i
2γ (α+1))

and qh
2 (v + i

2γ (α−2)) = q2(−v + i
2γ (α + 2)) are valid in the largest eigenvalue case and some

special sub-leading ones.)
Because of these analyticity properties, we can take the logarithmic derivative and perform

the Fourier transform on both sides of (B.8). Explicitly we find

â0 =




−q̂h
1 e−kγ α + q̂h

2 e−kγ (α−2) + E
(γ

2
α − uN

)
for k > 0

−q̂2ekγ (α+2) − E
(
−γ

2
(α + 2) + uN

)
for k < 0

−q̂h
1 + q̂h

2 − q̂2 for k = 0

â0 =




−q̂h
2 e−kγ (α−2) + E

(γ
2
(α + 2) − uN

)
for k > 0

−q̂1ekγ (α+1) + q̂2ekγ (α+2) − E
(
−γ

2
α + uN

)
for k < 0

−q̂h
2 − q̂1 + q̂2 for k = 0

Â1 − â1 =



q̂h

1 e−kγ α − E
(γ

2
α − uN

)
− E

(γ
2
(α + 2) − uN

)
for k > 0

q̂1ekγ (α+1) + E
(
−γ

2
α + uN

)
+ E

(
−γ

2
(α + 2) + uN

)
for k < 0

q̂h
1 + q̂1 for k = 0

Â0 + Â1 =



q̂h

2 e−kγ α − E
(γ

2
α + uN

)
for k > 0

q̂1ekγ (α+1) − q̂2ekγ (α+2) + E
(
−γ

2
α − uN

)
for k < 0

q̂h
2 + q̂1 − q̂2 for k = 0

Â0 + Â1 =



q̂h

1 e−kγ α − q̂h
2 e−kγ (α+2) − E

(γ
2
α + uN

)
for k > 0

q̂2ekγ α + E
(
−γ

2
α − uN

)
for k < 0

q̂h
1 − q̂h

2 + q̂2 for k = 0

(B.9)

where we have adopted the notation f̂ for the Fourier transform of the logarithmic derivative
of a function f (v),

f̂ = 1

π

∫ π
2

− π
2

{
∂

∂v
ln f (v)

}
e2ikv dv

∂

∂v
ln f (v) =

∞∑
k=−∞

f̂ e−2ikv (B.10)
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and E(x) := iNe−2kx . Applying this procedure to the eigenvalue (B.2), we have

#̂ =


q̂h

1 − E((α + 1)γ − uN) − E(αγ + uN) for k > 0
q̂1ekγ (2α+1) + E(−(α + 1)γ + uN) + E(−αγ − uN) for k < 0
q̂h

1 + q̂h
1 for k = 0.

(B.11)

From the last two equations in (B.9), we find the Fourier modes q̂1, q̂2, q̂h
1 and q̂h

2 can be

expressed in terms of Â0, Â0 and Â1. Substituting them for the first three equations in (B.9)
and integrating over v after performing the inverse Fourier transform (B.10), we arrive at

ln a0(v) = ψN(v) + k0 ∗ ln A0(v) + k0 ∗ ln A1(v) + βµ

ln a0(v) = ψN(−v) + k0 ∗ ln A0(v) + k0 ∗ ln A1(v) + βµ

ln a1(v) = ψN(v) + ψN(−v) + k0 ∗ ln A0(v) + k0 ∗ ln A0(v) + k1 ∗ ln A1(v) + 2βµ

ψN(v) = N

2
ln

sh(iv − uN + γ

2 α)sh(iv + uN − γ

2 (α + 2))

sh(iv + uN + γ

2 α)sh(iv − uN − γ

2 (α + 2))

(B.12)

where the integration contours for the convolutions with ln A0, ln A0 and ln A1 are taken by
the straight line with the imaginary part −δ, +δ and 0 (δ is arbitrary but fixed in the range
0 < δ < γ/2), respectively. In the same way, we obtain

ln#max(v) = .N(v) + ζ ∗ ln A0(v) + ζ ∗ ln A0(v) + (ζ + ζ ) ∗ ln A1(v)

.N(v) = N

2
ln

sh(iv + uN + γ (α + 1))sh(iv − uN − γ (α + 1))

sh(iv − uN + γ (α + 1))sh(iv + uN − γ (α + 1))
.

(B.13)

In these NLIEs, we can take the Trotter limit N → ∞ analytically:

lim
N→∞

ψN(v) = ψ(v) lim
N→∞

.N(v) = .(v). (B.14)

We have determined the integration constants βµ, 2βµ in (3.2) and 0 in (3.5) by taking the
limit |iv| → ∞ (note that we take this limit by making use of analytic continuation of the
NLIEs (see appendix D)) and comparing the results with

a0 → eβµ

eβµ + 1
a0 → eβµ

eβµ + 1
a1 → e2βµ

2eβµ + 1
# → (eβµ + 1)2. (B.15)

Appendix C. Derivation of NLIEs for excited states

Here we consider the excited states characterizing the correlations which are discussed in the
main text. As mentioned in section 3, the excited states are described by certain distribution
patterns of additional zeros and poles which enter the physical strip. To derive the NLIEs,
we must explore these zeros and poles. By taking the integration contours in a way that they
circumvent the zeros in the physical strip, we can derive the NLIEs directly by utilizing the
above results for the largest eigenvalue.

Taking the integration contours of the convolutions in (B.12) as in figure C.1 (and
subsequent figures), we have the same algebraic structure of NLIEs as in (B.12) without
additive terms. This is true at least in the case of the intermediate (differentiated) version
of (B.12) where ln a, ln A, ψN are replaced by (ln a)′, (ln A)′, ψ ′

N .
When integrating the NLIEs with respect to the argument we want to make sure that the

convolutions are understood in the manner k∗ (ln A)′(v) := ∫
C
k(x)(ln A)′(v−x) dx with a v-

independent pathC. This can always be achieved withC starting (ending) at −π/2 (+π/2) and
suitable deformations in order to avoid the singularities. The integration with respect to v and
up to an integration constant yields a set of NLIEs which has the same algebraic structure as in
the case of the largest eigenvalue where now terms k∗ ln A(v) = ∫

C
k(x) ln A(v−x) dx appear
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(a) (b)

Figure C.1. Integration contours for (a) the one-particle Green function and (b) the triplet
superconducting pair correlations. Here C0, C0 and C1 denote the contours for A0, A0 and A1,
respectively.

with deformed contours. Alternatively, we can straighten the contours and due to Cauchy’s
theorem obtain additional terms from the singularities of the auxiliary functions (these are the
‘sin’ terms below).

On top of these terms we obtain a second set of additional terms. Note that the functions
ln A0(v) and ln A1(v) are not periodic: ln A0(π/2) − ln A0(−π/2) = 2π i and ln A1(π/2) −
ln A1(−π/2) = 2π i for the one-particle Green functions and ln A0(π/2)−ln A0(−π/2) = 4π i
and ln A1(π/2)−ln A1(−π/2) = 4π i for the triplet superconducting pair correlations. Further
note that k ∗ ln A(v) = ∫

C
k(x) ln A(v − x) dx = ∫

v−C
k(v − x) ln A(x) dx which in the

general case (non-periodic ln A) is different from
∫
−C

k(v−x) ln A(x) dx. For many numerical
applications we actually like to have convolutions of the last type where the auxiliary functions
are evaluated on fixed (straight) contours. The difference of the two versions of convolution
integrals can be worked out and gives rise to the ‘cos’ terms below.

By use of the analytic continuation of the NLIE (see appendix D), one determines the
integration constants in a manner similar to the largest eigenvalue case.

We want to categorize the additional zeros and poles of the auxiliary functions in the
following four cases of excitations: (1) the one-particle Green functions and the triplet
superconducting pair correlations, (2) the density–density (longitudinal) correlations, (3) the
transversal spin–spin correlations and (4) the singlet superconducting pair correlations.

C.1. One-particle Green function and triplet superconducting pair correlations

First we consider the NLIE for the one-particle Green functions 〈c†
j,σ ci,σ 〉. In this case, the

eigenvalues (2.31) belong to the sector n = N − 1 and m = N/2 − 1. From the numerical
calculations with finite Trotter number N , we observe additional zeros, namely a zero θ0 of
the auxiliary function A0(v) and a zero θ1 of A1(v) located in the lower half-plane. The zeros
θ0 and θ1 are derived from

λ2

(
θ0 +

i

2
γα

)
+ λ3

(
θ0 +

i

2
γα

)
+ λ4

(
θ0 +

i

2
γα

)
= 0 qh

1

(
θ1 +

i

2
γα

)
= 0. (C.1)

In the case for the triplet superconducting pair correlations 〈c†
j+1,↑c

†
j,↑ci+1,↓ci,↓〉, the

corresponding eigenvalues (2.31) describing these correlations belong to the sector n = N −2
and m = N/2 − 2. Numerically we observe additional parameters: zeros θ0, −θ∗

0 for the
function A0(v) and zeros θ1, −θ∗

1 for function A1(v) appear in the lower half-plane (the
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(a) (b)

Figure C.2. Integration contours of the NLIE for (a) the dominant and (b) sub-dominant
contributions to the density–density correlations.

symbol ∗ denotes complex conjugation). As for the one-particle Green function, the zeros θ0

(−θ∗
0 ) and θ1 (θ∗

1 ) satisfy the first and the second equation in (C.1), respectively.

C.2. Density–density correlations

Let us consider the NLIEs for the density–density correlations 〈njni〉. The eigenvalues (2.31)
belong to the sector n = N andm = N/2 which is the same sector as for the largest eigenvalue.
These correlations are described by the distribution patterns of a zero θ0 (−θ0) and a pole θ1

(−θ1) of the auxiliary function A0(v) (A0(v)) appearing in the physical strip. In this case,
these zeros and poles are derived from

qh
2

(
θ0 +

i

2
γα

)
= 0 q2

(
−θ0 +

i

2
γα

)
= 0

qh
1

(
θ1 +

i

2
γα

)
= 0 q1

(
−θ1 +

i

2
γ (α + 1)

)
= 0.

(C.2)

In addition, we can consider the sub-dominant terms described by simple particle–hole
excitations at each Fermi point (see section 4). These sub-dominant terms are determined
from zeros θ0 (θ∗

0 ) for A0(v) (A0(v)) and θ1, θ∗
1 for A1(v), respectively. These zeros and poles

satisfy equation (C.2) (replace −θ1 and −θ0 by −θ1 → θ∗
1 and −θ0 → θ∗

0 , respectively).
Taking the integration contours as in figure C.2, we arrive at NLIEs which have the same form
as in (B.12). For both cases, we take the convolutions in the ordinary way, i.e. as for the largest
eigenvalue.

C.3. Transversal spin–spin correlations

Let us consider the eigenvalues which describe the transversal spin–spin correlations 〈σ +
j σ

−
i 〉.

The eigenvalues (2.31) belong to the sector n = N and m = N/2 − 1. Making use of
numerical calculations, we observe that additional zeros θ0 (−θ0) and poles θ1 (−θ1) of the
auxiliary function A0(v) (A0(v)) appear in the lower (upper) half-plane. As in case (1), these
zeros and poles get close to but never cross the real axis in the low-temperature limit. These
additional zeros (poles) are derived from

λ2

(
±θ0 +

i

2
γα

)
+ λ3

(
±θ0 +

i

2
γα

)
+ λ4

(
±θ0 +

i

2
γα

)
= 0

qh
1

(
θ1 +

i

2
γα

)
= 0 q1

(
−θ1 +

i

2
γ (α + 1)

)
= 0.

(C.3)
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Figure C.3. Integration contours of the NLIE for the transversal spin–spin correlations.

We derive the NLIEs by taking the contours as in figure C.3.

C.4. Singlet superconducting pair correlations

We consider the singlet superconducting pair correlations 〈c†
j+1,↑c

†
j,↓ci+1,↑ci,↓〉. In this case,

the eigenvalues written as (2.31) belong to the sector n = N − 2 and m = N/2 − 1. These
correlations are described by the distribution patterns of zeros θ0, θ0, θ̃0 and poles θ1, −θ∗

1 of
the auxiliary function A0(v). Numerically we observe that the zero θ̃0 is located on the ±π/2-
axis (Re v = ±π/2) and moves to the real axis with decreasing temperature. At sufficiently
high temperatures, the zeros θ0 and θ0 are related by θ0 = −θ∗

0 and get close to the boundary
(±π/2-axis) with decreasing temperature. At a certain temperature Tc, the zeros θ0, θ0 and
θ∗

0 satisfy θ0 = θ0 = θ∗
0 . Below Tc, the relation θ0 = −θ∗

0 is no longer valid, and these
zeros are located on the π/2-axis satisfying the relation Im θ0 < Im θ̃0 < Im θ0. θ̃0 and θ0

move upwards (in the +i direction along the π/2-axis), opposite to this θ0 moves in the −i
direction. In the low-temperature limit, θ̃0 comes near to the real axis but never crosses it.
On the other hand θ0 enters the upper half-plane and finally leaves the physical strip. θ0 also
leaves the physical strip in the lower half-plane. Consequently, at low temperature, only θ1

and −θ∗
1 (zeros of A1(v)) are circumvented by the integration contour of A1(v) and these zeros

characterize the massless pair-excitations (see section 4).
Due to this behaviour, we must take different integration contours for the different regimes

T > Tc and T < Tc. These zeros are derived from

λ2

(
θ0 +

i

2
γα

)
+ λ3

(
θ0 +

i

2
γα

)
+ λ4

(
θ0 +

i

2
γα

)
= 0

λ2

(
θ0 +

i

2
γα

)
+ λ3

(
θ0 +

i

2
γα

)
+ λ4

(
θ0 +

i

2
γα

)
= 0

qh
2 (θ̃0) = 0 qh

1

(
θ1 +

i

2
γα

)
= 0 q1

(
−θ1 +

i

2
γ (α + 1)

)
= 0.

(C.4)

We derive the NLIEs by taking the integration contours as in figure C.4(a) for the case T > Tc

and as in figure C.4(b) for the case T < Tc.

C.4.1. Additional terms in the NLIEs. As mentioned above, we obtain the same structure
of NLIEs as in the case of the largest eigenvalue by taking the integration contours of the
convolutions in such a way that they circumvent the zeros. To solve the NLIEs numerically, we
are forced to use straight integration contours. Due to Cauchy’s theorem in this formulation we
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(a) (b)

Figure C.4. Integration contours of the NLIE for the singlet superconducting pair correlations for
(a) T > Tc and (b) T < Tc.

obtain certain additional terms in the NLIEs. In what follows we list the additional contributions
to the driving terms in (3.7) and (3.8).

One-particle Green function. First we consider the one-particle Green function. The
corresponding NLIEs are characterized by the zeros θ0 and θ1. In the low-temperature limit,
these parameters come near to the real axis but never enter the upper half-plane. From (C.1),
we find that these parameters satisfy the subsidiary conditions

A0(θ0) = A0(θ0) = 0 A0(θ1) = ∞
A1(θ1) = 0 A1(θ0) = ∞.

(C.5)

Performing the Fourier transform and employing Cauchy’s theorem, we determine the
NLIE (3.7) with the following additional terms:

ϕ
(0)
0 (v) =




cos(v − iγ + iδ)

cos(v + iδ)
for Im θ0 < −δ

sin(v − θ0 − iγ )

sin(v − θ0)
for −δ < Im θ0 < 0

ϕ
(1)
0 (v) =




cos(v + iδ)

cos(v − iγ + iδ)
for Im θ1 < −δ

sin(v − θ1)

sin(v − θ1 − iγ )
for −δ < Im θ1 < 0

ϕ0(v) = ϕ
(0)
0 (v)ϕ

(1)
0 (v) ϕ0(v) = sin(v − θ1 + iγ )

sin(v − θ1)
ϕ1(v) = ϕ0(v)ϕ0(v).

(C.6)

The corresponding eigenvalues #(v) are written as (3.8) with the term χ(v) (split into two
terms χ(v) = χ(0)(v)χ(1)(v)),

χ(v) = χ(0)(v)χ(1)(v)

χ(0)(v) =




cos(v + i
2γα + iδ)

cos(v − i
2γ (α + 2) + iδ)

for Im θ0 < −δ

sin(v − θ0 + i
2γα)

sin(v − θ0 − i
2γ (α + 2))

for −δ < Im θ0 < 0
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χ(1)(v) = sin(v − θ1 − i
2αγ )

sin(v − θ1 + i
2γ (α + 2))

×




cos(v − i
2γ (α + 2) + iδ)

cos(v + i
2γα + iδ)

for Im θ1 < −δ

sin(v − θ1 − i
2γ (α + 2))

sin(v − θ1 + i
2αγ )

for −δ < Im θ1 < 0.

(C.7)

In fact the NLIE (3.7) with the additional terms (C.6) have two solutions. These two solutions
are related to each other by taking the mirror image with respect to the imaginary axis.
Correspondingly, the eigenvalues #(0) are doubly degenerate in magnitude and they are
complex conjugate to each other. The oscillatory behaviour of the one-particle Green function
(referred to as kF oscillation at zero temperature) derives from this degeneracy. The correlation
length for the one-particle Green function is given through formula (2.29).

Triplet superconducting pair correlations. We determine the additional terms for the triplet
superconducting pair correlations. As mentioned above, these correlations are characterized
by the additional zeros θ0 and θ1. In the low-temperature limit, these zeros come near the real
axis but never enter the upper half-plane. From (C.1), one finds that these zeros satisfy

A0(θ0) = A0(−θ∗
0 ) = A0(θ0) = A0(−θ∗

0 ) = 0 A0(θ1) = A0(−θ∗
1 ) = ∞

A1(θ1) = A1(−θ∗
1 ) = 0 A1(θ0) = A1(−θ∗

0 ) = ∞.
(C.8)

Performing the Fourier transform and employing Cauchy’s theorem, we determine the
NLIE (3.7) with the following additional terms:

ϕ
(0)
0 (v) =




cos2(v − iγ + iδ)

cos2(v + iδ)
for Im θ0 < −δ

sin(v − θ0 − iγ ) sin(v + θ∗
0 − iγ )

sin(v − θ0) sin(v + θ∗
0 )

for −δ < Im θ0 < 0

ϕ
(1)
0 (v) =




cos2(v + iδ)

cos2(v − iγ + iδ)
for Im θ1 < −δ

sin(v − θ1) sin(v + θ∗
1 )

sin(v − θ1 − iγ ) sin(v + θ∗
1 − iγ )

for −δ < Im θ1 < 0

ϕ0(v) = ϕ
(0)
0 (v)ϕ

(1)
0 (v) ϕ0(v) = sin(v − θ1 + iγ ) sin(v + θ∗

1 + iγ )

sin(v − θ1) sin(v + θ∗
1 )

ϕ1(v) = ϕ0(v)ϕ0(v).

(C.9)

The corresponding eigenvalues #(v) are written as (3.8) with the term χ(v),

χ(v) = χ(0)(v)χ(1)(v)

χ(0)(v) =




cos2(v + i
2γα + iδ)

cos2(v − i
2γ (α + 2) + iδ)

for Im θ0 < −δ

sin(v − θ0 + i
2γα) sin(v + θ∗

0 + i
2γα)

sin(v − θ0 − i
2γ (α + 2)) sin(v + θ∗

0 − i
2γ (α + 2))

for −δ < Im θ0 < 0

(C.10)
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χ(1)(v) = sin(v − θ1 − i
2αγ ) sin(v + θ∗

1 − i
2αγ )

sin(v − θ1 + i
2γ (α + 2)) sin(v + θ∗

1 + i
2γ (α + 2))

×




cos2(v − i
2γ (α + 2) + iδ)

cos2(v + i
2γα + iδ)

for Im θ1 < −δ

sin(v − θ1 − i
2γ (α + 2)) sin(v + θ∗

1 − i
2γ (α + 2))

sin(v − θ1 + i
2αγ ) sin(v + θ∗

1 + i
2αγ )

for −δ < Im θ1 < 0.

(C.11)

Density–density (longitudinal spin–spin) correlations. Next we determine the NLIE for the
density–density correlations. As the critical exponents of the density–density correlation
functions are identical to those of the longitudinal spin–spin correlations 〈σ z

j σ
z
i 〉, the resultant

NLIEs are also identical. From (C.2), we find these zeros satisfy the subsidiary conditions

A0(θ0) = A0(−θ0) = 0 A0(θ1) = A0(−θ1) = ∞ A1(±θ1) = 0. (C.12)

Correspondingly, the additional terms in the NLIE (3.7) read

ϕ
(0)
0 (v) =




sin(v − θ0) cos(v − iγ + iδ)

sin(v − θ0 − iγ ) cos(v + iδ)
for Im θ0 < −δ

1 for −δ < Im θ0

ϕ
(1)
0 (v) = sin(v + θ1 − iγ )

sin(v + θ1)
×




cos(v + iδ)

cos(v − iγ + iδ)
for Im θ1 < −δ

sin(v − θ1)

sin(v − θ1 − iγ )
for −δ < Im θ1 < 0

ϕ0(v) = ϕ
(0)
0 (v)ϕ

(1)
0 (v) ϕ0(v) = ϕ0(−v) ϕ1(v) = ϕ0(v)ϕ0(v).

(C.13)

The additional term χ(v) in (3.8) is determined from

χ(v) = χ(0)(v)χ(1)(v)

χ(0)(v) =




sin(v − θ0 − i
2γ (α + 2)) sin(v + θ0 + i

2γ (α + 2)) cos(v + i
2γα + iδ) cos(v − i

2γα − iδ)

sin(v − θ0 + i
2γα) sin(v + θ0 − i

2γα) cos(v − i
2γ (α + 2) + iδ) cos(v + i

2γ (α + 2) − iδ)
for Im θ0 < −δ

1

for − δ < Im θ0

χ(1)(v) = sin(v − θ1 − i
2αγ ) sin(v + θ1 + i

2αγ )

sin(v − θ1 + i
2γ (α + 2)) sin(v + θ1 − i

2γ (α + 2))

×




cos(v − i
2γ (α + 2) + iδ) cos(v + i

2γ (α + 2) − iδ)

cos(v + i
2γα + iδ) cos(v − i

2γα − iδ)
for Im θ1 < −δ

sin(v − θ1 − i
2γ (α + 2)) sin(v + θ1 + i

2γ (α + 2))

sin(v − θ1 + i
2αγ ) sin(v + θ1 − i

2αγ )
for −δ < Im θ1 < 0.

(C.14)

In the low-temperature limit, θ1 gets close to the real axis but does not cross it. In contrast,
θ0 crosses the real axis and enters the upper half-plane. Hence only one additional zero
θ1 appears explicitly in the above NLIE, which is characteristic of massless excitations (see
section 4). The solutions to the above NLIE have the symmetry a0(v) = a0(−v) and a1(v)

is symmetric with respect to the imaginary axis. The NLIEs (C.13) have two solutions which
are connected with each other by taking the mirror image with respect to the imaginary axis.
Hence the corresponding eigenvalues #(0) are degenerate in magnitude; they are complex
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conjugate to each other. Due to this degeneracy, the correlations have an oscillation factor. At
zero temperature, this oscillatory behaviour is the characteristic 2kF oscillation in the density–
density correlations.

The sub-dominant terms discussed above are characterized by another distribution pattern
of zeros and poles. Consequently, a zero θ0 (θ∗

0 ) and a pole θ1 (θ∗
1 ) of the functions a0(v)

(a0(v)) appear in the physical strip. From (C.2) (replace −θ1 and −θ0 by −θ1 → θ∗
1 and

−θ0 → θ∗
0 , respectively), we find that these zeros and poles satisfy the subsidiary conditions

A0(θ0) = A0(θ
∗
0 ) = 0 A0(θ1) = A0(θ

∗
1 ) = ∞ A1(θ1) = A1(θ

∗
1 ) = 0. (C.15)

In the same way as before one obtains the NLIEs characterized by the following additional
terms:

ϕ
(0)
0 (v) =




sin(v − θ0) cos(v − iγ + iδ)

sin(v − θ0 − iγ ) cos(v + iδ)
for Im θ0 < −δ

1 for −δ < Im θ0

ϕ
(1)
0 (v) = sin(v − θ∗

1 − iγ )

sin(v − θ∗
1 )

×




cos(v + iδ)

cos(v − iγ + iδ)
for Im θ1 < −δ

sin(v − θ1)

sin(v − θ1 − iγ )
for −δ < Im θ1 < 0

ϕ0(v) = ϕ
(0)
0 (v)ϕ

(1)
0 (v) ϕ0(v) = ϕ∗

0(v) ϕ1(v) = ϕ0(v)ϕ0(v).

(C.16)

The term χ(v) in the eigenvalues (3.8) is written as

χ(v) = χ(0)(v)χ(1)(v)

χ(0)(v) =




sin(v − θ0 − i
2γ (α + 2)) sin(v − θ∗

0 + i
2γ (α + 2)) cos(v + i

2γα + iδ) cos(v − i
2γα − iδ)

sin(v − θ0 + i
2γα) sin(v − θ∗

0 − i
2γα) cos(v − i

2γ (α + 2) + iδ) cos(v + i
2γ (α + 2) − iδ)

for Im θ0 < −δ

1

for − δ < Im θ0

χ(1)(v) = sin(v − θ1 − i
2αγ ) sin(v − θ∗

1 + i
2αγ )

sin(v − θ1 + i
2γ (α + 2)) sin(v − θ∗

1 − i
2γ (α + 2))

×




cos(v − i
2γ (α + 2) + iδ) cos(v + i

2γ (α + 2) − iδ)

cos(v + i
2γα + iδ) cos(v − i

2γα − iδ)
for Im θ1 < −δ

sin(v − θ1 − i
2γ (α + 2)) sin(v − θ∗

1 + i
2γ (α + 2))

sin(v − θ1 + i
2αγ ) sin(v − θ∗

1 − i
2αγ )

for −δ < Im θ1 < 0.

(C.17)

At low temperatures, the parameter θ1 (zero of the function A1(v)) moves toward the real axis
but never crosses it, whereas θ0 (zero of the function A0(v)) crosses the real axis and enters
the upper half-plane. In this limit, the NLIEs depend only on the two zeros (of A1(v)) θ1 and
θ∗

1 , which characterize the particle–hole excitations (see section 4).
Note that the solutions to the above NLIEs satisfy a∗

0(v) = a0(v) and a1(v) is symmetric
with respect to the real axis but not to the imaginary axis. Therefore a1(v) is real for v ∈ R.
The three NLIE are also reducible as in the dominant case. The NLIE with (C.16) admits two
solutions. In contrast to the above dominant case, they are related to each other by taking the
mirror image with respect to the real axis. The corresponding eigenvalues #(0) are degenerate
and are real. Hence one finds that the corresponding correlations do not have oscillatory terms.
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Transversal spin–spin correlations. Let us determine the additional terms of the NLIEs
describing the transversal spin–spin correlations. As mentioned above, these correlations are
characterized by the zeros and poles satisfying equation (C.3). Hence we find that these zeros
(poles) satisfy the following subsidiary conditions:

A0(±θ0) = A0(±θ0) = 0 A0(θ1) = A0(−θ1) = ∞
A1(±θ1) = 0 A1(±θ0) = ∞.

(C.18)

Consequently, the additional terms are written as follows:

ϕ
(0)
0 (v) =




cos(v − iγ + iδ)

cos(v + iδ)
for Im θ0 < −δ

sin(v − θ0 − iγ )

sin(v − θ0)
for −δ < Im θ0 < 0

ϕ
(1)
0 (v) = sin(v + θ1 − iγ )

sin(v + θ1)
×




cos(v + iδ)

cos(v − iγ + iδ)
for Im θ1 < −δ

sin(v − θ1)

sin(v − θ1 − iγ )
for −δ < Im θ1 < 0

ϕ0(v) = ϕ
(0)
0 (v)ϕ

(1)
0 (v) ϕ0(v) = ϕ0(−v) ϕ1(v) = ϕ0(v)ϕ0(v).

(C.19)

The term χ(v) in the eigenvalue (3.8) is written as

χ(v) = χ(0)(v)χ(1)(v)

χ(0)(v) =




cos(v + i
2γα + iδ) cos(v − i

2γα − iδ)

cos(v − i
2γ (α + 2) + iδ) cos(v + i

2γ (α + 2) − iδ)
for Im θ0 < −δ

sin(v − θ0 + i
2γα) sin(v + θ0 − i

2γα)

sin(v − θ0 − i
2γ (α + 2)) sin(v + θ0 + i

2γ (α + 2))
for −δ < Im θ0 < 0

χ(1)(v) = sin(v − θ1 − i
2αγ ) sin(v + θ1 + i

2αγ )

sin(v − θ1 + i
2γ (α + 2)) sin(v + θ1 − i

2γ (α + 2))

×




cos(v − i
2γ (α + 2) + iδ) cos(v + i

2γ (α + 2) − iδ)

cos(v + i
2γα + iδ) cos(v − i

2γα − iδ)
for Im θ1 < −δ

sin(v − θ1 − i
2γ (α + 2)) sin(v + θ1 + i

2γ (α + 2))

sin(v − θ1 + i
2αγ ) sin(v + θ1 − i

2αγ )
for −δ < Im θ1 < 0.

(C.20)

As in the largest eigenvalue case, the solutions a0(v) and a0(v) have the symmetry
a0(v) = a0(−v). Therefore one reduces the above set of three NLIEs to the set of only
two NLIEs. In addition, one finds that the NLIEs (C.19) admit two solutions which are
related to each other by taking the mirror image with respect to the imaginary axis. Thus the
corresponding eigenvalues #(0) are degenerate in magnitude and are complex conjugate.
Hence, oscillatory behaviour of the correlation functions is observed, referred to as 2kF

oscillation for zero temperature.

Singlet superconducting pair correlations. Finally, we consider the NLIE for the singlet
superconducting pair correlations characterizing the above-mentioned additional zeros (poles).
From (C.4), one sees that these zeros and poles satisfy the subsidiary conditions

A0(θ0) = A0(θ0) = A0(θ̃0) = A0(θ0) = A0(θ0) = 0
A0(θ1) = A0(−θ∗

1 ) = A0(θ1) = A0(−θ∗
1 ) = A0(θ̃0 + iγ ) = ∞

A1(θ1) = A1(−θ∗
1 ) = 0 A1(θ0) = A1(θ0) = ∞.

(C.21)
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The additional terms in the NLIE (3.7) read explicitly,

ϕ
(0)
0 (v) =




1 for Im θ0 < −δ

sin(v − θ0 − iγ ) cos(v + iδ)

sin(v − θ0) cos(v − iγ + iδ)
for −δ < Im θ0 < 0

cos(v + iδ) cos(v − iγ )

cos(v − iγ + iδ) cos(v)
for 0 < Im θ0

ϕ
(0)
0 (v) =




1 for Im θ0 < −δ

sin(v − θ0 − iγ ) cos(v + iδ)

sin(v − θ0) cos(v − iγ + iδ)
for −δ < Im θ0 < 0

ϕ
(0̃)
0 (v) =




sin(v − θ̃0)

sin(v − θ̃0 − iγ )
for Im θ̃0 < −δ

cos(v + iδ)

cos(v − iγ + iδ)
for −δ < Im θ̃0 < 0

ϕ
(1)
0 (v) =




1 for Im θ1 < −δ

sin(v − θ1) sin(v + θ∗
1 ) cos2(v − iγ + iδ)

sin(v − θ1 − iγ ) sin(v + θ∗
1 − iγ ) cos2(v + iδ)

for −δ < Im θ1 < 0

ϕ
(0)
0 (v) =




1 for Im θ0 < 0
sin(v − θ0 + iγ ) cos(v)

sin(v − θ0) cos(v + iγ )
for 0 < Im θ0 < δ

cos(v) cos(v + iγ − iδ)

cos(v + iγ ) cos(v − iδ)
for δ < Im θ0

ϕ
(0̃)
0 (v) =




sin(v − θ̃0 − iγ )

sin(v − θ̃0)
for Im θ̃0 + γ < δ

cos(v − iδ)

cos(v + iγ − iδ)
for δ < Im θ̃0 + γ

ϕ
(1)
0 (v) = sin(v − θ1 + iγ ) sin(v + θ∗

1 + iγ )

sin(v − θ1) sin(v + θ∗
1 )

ϕ0(v) = ϕ
(0)
0 (v)ϕ

(0)
0 (v)ϕ

(0̃)
0 (v)ϕ

(1)
0 (v)

ϕ0(v) = ϕ
(0)
0 (v)ϕ

(0̃)
0 (v)ϕ

(1)
0 (v) ϕ1(v) = ϕ0(v)ϕ0(v).

(C.22)

The additional term χ(v) in (3.8) is determined from

χ(v) = χ(0)(v)χ(0)(v)χ(0̃)(v)χ(1)(v)

χ(0)(v) =




1 for Im θ0 < −δ

sin(v − θ0 + i
2γα) cos(v − i

2γ (α + 2) + iδ)

sin(v − θ0 − i
2γ (α + 2)) cos(v + i

2γα + iδ)

for − δ < Im θ0 < 0

sin(v − θ0 − i
2γα) cos(v − i

2γ (α + 2) + iδ) cos(v + i
2γα) cos(v + i

2γ (α + 2))

sin(v − θ0 + i
2γ (α + 2)) cos(v + i

2γα + iδ) cos(v − i
2γ (α + 2)) cos(v − i

2γα)

for 0 < Im θ0 < δ

cos(v − i
2γα − iδ) cos(v − i

2γ (α + 2) + iδ) cos(v + i
2γα) cos(v + i

2γ (α + 2))

cos(v + i
2γ (α + 2) − iδ) cos(v + i

2γα + iδ) cos(v − i
2γ (α + 2)) cos(v − i

2γα)

for δ < Im θ0
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χ(0)(v) =




1 for Im θ0 < −δ

sin(v − θ0 + i
2γα) cos(v − i

2γ (α + 2) + iδ)

sin(v − θ0 − i
2γ (α + 2)) cos(v + i

2γα + iδ)

for − δ < Im θ0 < 0

(C.23)

χ(0̃)(v) =




1 for 0 < Im θ̃0 + γ < δ

sin(v − θ̃0 − i
2γ (α + 2)) cos(v + i

2γ (α + 2) − iδ)

sin(v − θ̃0 + i
2γα) cos(v − i

2γα − iδ)

for Im θ̃0 < −δ δ < Im θ̃0 + γ

cos(v − i
2γ (α + 2) + iδ) cos(v + i

2γ (α + 2) − iδ)

cos(v + i
2γα + iδ) cos(v − i

2γα − iδ)

for − δ < Im θ̃0 < 0

χ(1)(v) = sin(v − θ1 − i
2αγ ) sin(v + θ∗

1 − i
2αγ )

sin(v − θ1 + i
2γ (α + 2)) sin(v + θ∗

1 + i
2γ (α + 2))

×




1 for Im θ1 < −δ

sin(v − θ1 − i
2γ (α + 2)) sin(v + θ∗

1 − i
2γ (α + 2)) cos2(v + i

2γα + iδ)

sin(v − θ1 + i
2αγ ) sin(v + θ∗

1 + i
2αγ ) cos2(v − i

2γ (α + 2) + iδ)

for − δ < Im θ1 < 0.

Appendix D. Analytic continuation for NLIE

The above-derived NLIEs are well defined only in the region −γ + δ < Im v < 0 for ln a0(v),
0 < Im v < γ − δ for ln a0(v) and −δ < Im v < δ for ln a1(v). To determine the integration
constants (which should be determined from the limit i|v| → ∞) and the additional zeros for
the excited states, we must extend the region by using the analytic continuation. We can achieve
this by applying Cauchy’s theorem to the convolutions. As a consequence, the additional terms
appear due to the residues of the kernels. The resultant equations can be written explicitly as
follows:

ln a0(v) = ψ(v) + k0
C0∗ ln A0(v) + k0

C1∗ ln A1(v) + βµ − ϕc
0(v)

ln a0(v) = ψ(−v) + k0
C0∗ ln A0(v) + k0

C1∗ ln A1(v) + βµ − ϕc
0(v)

ln a1(v) = ψ(v) + ψ(−v) + k0
C0∗ ln A0(v) + k0

C0∗ ln A0(v)

+k1
C1∗ ln A1(v) + 2βµ − ϕc

1(v)

(D.1)

where

ϕc
0(v) =




ln A0(v + iγ ) + ln A1(v + iγ ) for Im v < −γ

ln A0(v + iγ ) for −γ < Im v < −γ + δ

0 for −γ + δ < Im v < 0

ln A1(v) for 0 < Im v < δ

ln A0(v) + ln A1(v) for δ < Im v
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ϕc
0(v) =




ln A0(v) + ln A1(v) for Im v < −δ

ln A1(v) for −δ < Im v < 0

0 for 0 < Im v < γ − δ

ln A0(v − iγ ) for γ − δ < Im v < γ

ln A0(v − iγ ) + ln A1(v − iγ ) for γ < Im v

(D.2)

ϕc
1(v) =




ln A0(v) + ln A0(v + iγ ) + ln A1(v + iγ ) for Im v < −γ

ln A0(v) + ln A0(v + iγ ) for −γ < Im v < −γ + δ

ln A0(v) for −γ + δ < Im v < −δ

0 for −δ < Im v < δ

ln A0(v) for δ < Im v < γ − δ

ln A0(v) + ln A0(v − iγ ) for γ − δ < Im v < γ

ln A0(v) + ln A0(v − iγ ) + ln A1(v − iγ ) for γ < Im v.

Similarly, the NLIE for the eigenvalue can be written as follows:

ln#(v) = .(v) + ζ ∗ ln A0(v) + ζ ∗ ln A0(v) + (ζ + ζ ) ∗ ln A1(v) + χ c
0(v) + χ c

0(v) + χ c
1(v)

(D.3)

where

χ c
0(v) =




ln A0

(
v +

i

2
γα

)
for Im v < − γ

2 α − δ

0 for − γ

2 α − δ < Im v <
γ

2 (α + 2) − δ

ln A0

(
v − i

2
γ (α + 2)

)
for γ

2 (α + 2) − δ < Im v

χ c
0(v) =




ln A0

(
v +

i

2
γ (α + 2)

)
for Im v < − γ

2 (α + 2) + δ

0 for − γ

2 (α + 2) + δ < Im v <
γ

2 α + δ

ln A0

(
v − i

2
γα

)
for γ

2 α + δ < Im v

(D.4)

χ c
1(v) =




ln A1

(
v +

i

2
γα

)
+ ln A1

(
v +

i

2
γ (α + 2)

)
for Im v < − γ

2 (α + 2)

ln A1

(
v +

i

2
γα

)
for − γ

2 (α + 2)< Im v<− γ

2 α

0 for − γ

2 α < Im v <
γ

2 α

ln A1

(
v − i

2
γα

)
for γ

2 α < Im v <
γ

2 (α + 2)

ln A1

(
v − i

2
γα

)
+ ln A1

(
v − i

2
γ (α + 2)

)
for γ

2 (α + 2) < Im v.
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[16] Klümper A 1993 Z. Phys. B 91 507
[17] Yang C N and Yang C P 1969 J. Math. Phys. 10 1115
[18] Gaudin M 1971 Phys. Rev. Lett. 26 1301
[19] Takahashi M 1971 Prog. Theor. Phys. 46 401
[20] Kuniba A, Sakai K and Suzuki J 1998 Nucl. Phys. B 525 597
[21] Sakai K, Shiroishi M, Suzuki J and Umeno Y 1999 Phys. Rev. B 60 5186
[22] Sakai K 1999 J. Phys. Soc. Japan 68 1789
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